Современная электронная библиотека ModernLib.Net

Деволюция человека: Ведическая альтернатива теории Дарвина

ModernLib.Net / Научно-образовательная / Кремо Майкл А. / Деволюция человека: Ведическая альтернатива теории Дарвина - Чтение (стр. 11)
Автор: Кремо Майкл А.
Жанр: Научно-образовательная

 

 


Поскольку африканской группе свойственно большее внутреннее разнообразие, чем азиатской или европейской группам, исследователи сделали вывод, что население Африки старше всех других. Однако Темплтон отмечает, что «в отчетах не было представлено никаких статистических данных по этому вопросу» (Templeton. 1993. P. 56). Он отмечает, что при применении должных статистических методов между митохондриальной ДНК африканцев, европейцев и азиатов не наблюдается значительных расхождений (Templeton. 1993. P. 53). Темплтон пишет: «Кажущееся большее разнообразие в африканской группе является следствием недостатков статистического анализа, на основании которого и были сделаны заключения относительно… процесса, в результате которого сформировалось современное население Земли. Суть в том, что свидетельства о географических корнях человечества весьма расплывчаты… и нет никаких статистически обоснованных аргументов в пользу африканского происхождения на основе данных генетического исследования митохондриальных ДНК» (Templeton. 1993. P. 57).

Теперь рассмотрим данные о возрасте анатомически современного человека, полученные сторонниками гипотезы африканской Евы. Они попытались вычислить время, которое потребовалось для возникновения разнообразия митохондриальной ДНК, наблюдаемого у современных людей, исходя при этом из скорости мутаций. На основе этих расчетов определяется ближайший к нам «период единообразия», когда митохондриальная ДНК у всех людей имела одинаковую последовательность основ. Одна группа исследователей (Stoneking et al. 1986) определила возраст Евы примерно в 200 000 лет, в промежутке между 140 000 и 290 000 лет, используя для этого внутривидовые вычисления по молекулярным часам. Под внутривидовыми вычислениями подразумевается то, что они исходили из скорости мутаций только человека. Другая группа ученых (Vigilant et al. 1991), используя межвидовые вычисления, также получила цифру в 200 000 лет, но уже в промежутке между 166 000 и 249 000 лет. Под межвидовыми вычислениями подразумевается то, что они проводили свои вычисления, взяв за отправную точку предположительное время отделения человеческой ветви от ветви шимпанзе.

Для начала рассмотрим отчет об исследовании, основанном на межвидовом определении скорости мутации (Vigilant et al. 1991). Они исходили из предположения о том, что человеческая ветвь отделилась от ветви шимпанзе 4 или 6 миллионов лет назад. Вычисления на основании этой датировки с учетом статистической неопределенности позволяют судить о том, что единообразие митохондриальной ДНК человека существовало, соответственно, 170 000 или 256 000 лет назад (Templeton et al. 1993. P. 58). Однако, по оценкам Гингериха, разделение человека и шимпанзе произошло 9,2 миллиона лет назад. Если исходить из этой цифры, то полученная величина изменений отодвинет время единообразия митохондриальной ДНК на 554 000 лет назад (Templeton. 1993. Pp. 58–59). Кроме того, Ловджой и его коллеги (Lovejoy. 1993) отметили, что Виджилант и другие допустили математическую ошибку (они использовали неправильную транзицию-трансверсию), при исправлении которой возраст Евы увеличится как минимум до 1,3 миллиона лет (Frayer et al. 1993. P. 40).

Несложно заметить, что исследования, основанные на так называемых «молекулярных часах», дают крайне ненадежные результаты, поскольку основываются на недоказанных эволюционных предпосылках. Не существует никаких доказательств того, что у человека и шимпанзе был единый предок, в чем уверяют нас последователи Дарвина. Как мы уже убедились, даже если согласиться с этим утверждением, невозможно с точностью определить время, когда они отделились от своего единого предка, что приводит к большим расхождениям в оценке скорости мутаций и определении времени единообразия митохондриальных ДНК.

Теперь рассмотрим заключения, к которым пришли те, кто проводили исследования на основе внутривидовых вычислений, то есть только в отношении мутаций, накопившихся в митохондриальной ДНК человека, не учитывая предположительного времени разделения ветвей человека и шимпанзе. Темплтон указывает, что эта методика не принимает во внимание несколько «источников ошибок и неопределенности». Например, тот факт, что в действительности скорость мутаций не постоянна. Мутации происходят случайно, согласно распределению Пуассона. Распределение Пуассона, названное в честь французского математика С. Д. Пуассона, используется для вычисления вероятности случайных событий (таких, как появление грамматических ошибок в печатных изданиях или мутаций в ДНК). Темплтон пишет: «В этой связи очень важно иметь в виду, что человечество представляет один из многих образцов мутационного процесса, лежащего в основе структуры современной митохондриальной ДНК. Поэтому, даже если бы митохондриальная ДНК человека была полностью расшифрована, скорость мутаций была точно определена и молекулярные часы шли бы в точном соответствии с распределением Пуассона, то и тогда время единообразия митохондриальной ДНК невозможно было бы определить точно… Поэтому стохастичность исследуемого процесса неизбежно мешает точному определению возраста, и в этом не поможет ни увеличение исследуемых образцов, ни большее генетическое разрешение, ни более точное определение скорости генетических изменений» (Templeton. 1993. P. 57).

Стоункинг и соавторы его научной работы (Stoneking et al. 1986) признают существование проблемы стохастичности, однако, по словам Темплтона, они не предпринимают адекватных шагов для ее решения. Стоункинг и его соавторы подсчитали, что расхождения в митохондриальной ДНК у исследованных ими групп людей, составили 2–4 %. Сколько же потребовалось времени, чтобы образовались такие расхождения? Стоункинг и его соавторы считают, что для этого потребовалось 200 000 лет. Однако Темплтон обнаружил, что если учесть вероятностные эффекты, то получится цифра в 290 000 лет. Далее Темплтон указывает, что «действительные величины, указанные в их работе, имеют 5-кратное расхождение (1,8–9,3 %), а в работах других исследователей они еще больше (1,4–9,3 %)» (Templeton. 1993. P. 58). Более широкие рамки расхождения позволяют датировать время единообразия митохондриальной ДНК в промежутке между 33 000 и 675 000 годами.

Сторонники гипотезы об африканской Еве и другие считают, что митохондриальная ДНК не подлежит естественному отбору. Это значит, что единственным фактором, приводящим к появлению различий в последовательностях митохондриальной ДНК у разных групп на Земле, являются случайные мутации, накапливающиеся с определенной скоростью. Если это так, то это значит, что молекулярные часы идут с одинаковой скоростью у разных групп населения Земли. Если бы в формировании различий ДНК у разных групп участвовал бы еще и естественный отбор, то это совершенно бы смешало показания молекулярных часов. К примеру, если бы у одной группы населения естественный отбор удалил последствия некоторых мутаций, то эта группа казалась бы моложе, чем на самом деле. В этом случае невозможно было бы сопоставить величину мутаций с определенным отрезком времени и сравнить возраст различных групп. Существуют доказательства того, что естественный отбор действительно играет роль в изменении митохондриальной ДНК. К примеру, Темплтон указывает на различия в степени расхождения кодирующих и некодирующих участков митохондриальной ДНК у разных групп. Если бы скорость мутаций была нейтральна, этого бы не наблюдалось. Степень мутаций должна быть одинакова как у кодирующих, так и у некодирующих участков митохондриальной ДНК (Templeton. 1993. P. 59). К этому заключению приходят и другие исследователи (Frayer et al. 1993. Pp. 39–40): «Все молекулярные часы требуют эволюционной нейтральности для обеспечения постоянства скорости изменений. Однако продолжительные исследования митохондриальной ДНК позволяют со все большей уверенностью говорить о роли естественного отбора в изменениях митохондриальной ДНК. К примеру, такие исследователи, как Фос и его соавторы (Fos et al. 1990), МакРей и Андерсон (MacRae, Anderson. 1988), Палька (Palca. 1990), Уоллес (Wallace D. C. 1992) и другие продемонстрировали, что митохондриальная ДНК не нейтральна, а подлежит строгому естественному отбору… Митохондриальная ДНК – это неподходящая пружина для молекулярных часов».

Фрайер и его соавторы также утверждают: «Поскольку случайные потери, происходящие в митохондриальной ДНК, приводят к утрате свидетельств о предыдущих мутациях, все генеалогические древа развития первопредка подвержены изменениям под влиянием неизвестных и непредсказуемых факторов. Каждое такое невидимое изменение представляет собой генетическую замену, которая не принимается во внимание при расчете количества мутаций, необходимого для определения возраста Евы. Поскольку на такие изменения влияют колебания численности той или иной группы населения, и точное число незасчитанных мутаций зависит от конкретных деталей процесса их сглаживания, невозможно найти способ калибровки (и постоянной перекалибровки) молекулярных часов, пока не станет известна вся история той или иной группы населения. Принимая во внимание тот факт, что каждая группа населения имеет свою демографическую историю (с учетом среднего уровня потерь), один только этот фактор обесценивает использование вариаций митохондриальной ДНК для определения временных отрезков (Thorne, Wolpoff, 1992).

Подтверждением вышесказанному служит находка ископаемых останков анатомически современного человека близ озера Мунго в Австралии, возраст которых 62 000 лет и чья митохондриальная ДНК значительно отличается от современных образцов (Bower, 2001). Это показывает, что пути развития митохондриальной ДНК невозможно проследить, и ставит под сомнение точность молекулярных часов на основе митохондриальной ДНК.

Существуют также и другие факторы, влияющие на расхождения в митохондриальной ДНК у современных групп населения в разных регионах мира, которые ставят под вопрос точность калибровки молекулярных часов на основе скорости мутаций митохондриальной ДНК. Один из этих факторов – демографическая экспансия групп населения. Если население увеличивается в одном регионе быстрее, чем в другом, это может привести к большему разнообразию митохондриальной ДНК у данной группы. Это разнообразие не дает оснований считать, что одна группа старше другой или является источником других групп в других регионах. Также расхождения, наблюдаемые в различных группах, могут указывать не на перемещения группы из одного региона в другой, а на перемещение генов внутри одной группы, населяющей обширное пространство. И это не исчерпывает возможных причин разнообразия митохондриальной ДНК у разных групп. Подводя итог обсуждению этой проблемы, Темплтон пишет: «Региональное разнообразие митохондриальной ДНК не обязательно отражает возраст данной группы, а, скорее, говорит о том, сколько времени прошло с последней положительной мутации в этой группе, о демографической истории группы, масштабе экспансии и обмена генами с другими группами и т. п.» (Templeton. 1993. P. 59). В общих чертах, эти факторы добавляют уверенности в том, что возраст человека как вида значительно занижен (Templeton. 1993. P. 60).

Сложнейшие статистические методы, такие как «гнездовой анализ происхождения», позволяют ученым до некоторой степени дифференцировать различные модели возникновения разнообразия митохондриальной ДНК у групп людей (как, например, модели географической экспансии и модели обмена генами). Используя гнездовой анализ происхождения в отношении вариаций митохондриальной ДНК человека, Теплтон не обнаружил никаких свидетельств масштабных миграций из Африки, которая должна была привести к замене всех других групп гоминидов. Темплтон пишет: «Неспособность классического гнездового анализа происхождения обнаружить признаки экспансии населения Африки невозможно отнести на счет неадекватных размеров образцов или низкого генетического разрешения…. Отсюда следует, что географическая привязка тех или иных вариантов митохондриальной ДНК статистически противоречит гипотезе об экс-африканской экспансии» (Templeton. 1993. P. 65). В заключение Темплтон пишет: «1) свидетельства географического местоположения единого митохондриального предка сомнительны и 2) время существования единого митохондриального предка также крайне неопределенно, но, вероятнее всего, намного превосходит 200 000 лет» (Templeton. 1993. P. 70).

Свидетельства исследований ядерной ДНК

По утверждению сторонников гипотезы африканской Евы, большая группа анатомически современных людей мигрировала из места своего происхождения в Африке в Европу и Азию, вытеснив живущих там гоминидов, что должно подтверждаться данными не только митохондриальных ДНК, но и ДНК, содержащихся в ядрах клеток. Однако в своем анализе первых работ, посвященных африканской Еве, Темплтон утверждает: «…не существует ни одного свидетельства, позволяющего связать данные, полученные в результате исследований митохондриальной и ядерной ДНК, с гипотезой экс-африканского замещения» (Templeton. 1993. P. 65).

Одна группа исследователей во главе с Брегетом рассмотрела вариации участка «В» у гена, отвечающего за апопротеин человека (Breguet et al. 1990). Согласно Темплтону, проведенный ими детальный анализ позволил сделать вывод, что «кавказские народности (населявшие территорию от Северной Африки до Индии) были ближе к прародителям человечества, чем все другие группы, и что всемирная генетическая дифференциация этого участка гена лучше всего объясняется оттоком генов из этого региона на запад и восток, а не суб-сахарским происхождением» (Templeton. 1993. Pp. 68–69). Для таких исследователей, как я, которые в своей работе отталкиваются от данных, содержащихся в санскритских текстах древней Индии, и считают местом повторного появления человечества (после всемирных потопов) регион Гималаев, эти данные представляют значительный интерес.

Совсем недавно исследователи обнаружили еще одну проблему, связанную с гипотезой африканского происхождения человека. Эта проблема связана с группой генов глобина у людей. Ген или часть гена на определенном участке хромосомы может присутствовать в нескольких различных формах, именуемых аллелями. Проанализировав глобиновые аллели у разных групп людей, авторы недавно опубликованного учебника обнаружили, что наблюдаемая величина вариаций указывает на то, что возраст современного человека значительно превышает 200 000 лет. К тому же, исследовав другой участок группы глобиновых генов, авторы утверждают, что «две аллели некодирующего (и поэтому нейтрального) участка, судя по всему, сохранялись неизменными на протяжении 3 000 000 лет». Они заключили: «До настоящего времени неясно, как сопоставить структуру глобиновых генов с данными об африканском происхождении человека в гораздо более поздние времена» (Page, Holmes. 1998. P. 132). Данные, полученные путем анализа глобина, соответствуют сведениям о глубокой древности человеческого рода, почерпнутым из древнеиндийских Пуран.

Принимая во внимание сложности, связанные с генетическими данными, некоторые исследователи заявили, что ископаемые являются самым надежным свидетельством происхождения и возраста человечества: «В отличие от генетических данных, полученных при исследовании материалов, взятых у живущих людей, ископаемые могут быть использованы в качестве мерила правильности тех или иных теорий о прошлом человека, позволяющего обходиться без длинного списка допущений относительно генетических маркеров, скорости мутации и других необходимых условий для составления картины прошлого на основе современных генетических вариаций… генетическая информация, в лучшем случае, позволяет строить теории о том, как мог появиться современный человек, если допущения, использованные при трактовке генетических данных, правильны» (Frayer et al. 1993. P. 19). Я согласен с тем, что генетические свидетельства не всегда надежнее археологических. Это значит, что археологические свидетельства об огромной древности человека, документированные в книге «Запрещенная археология», могут стать барьером для безудержных спекуляций исследователей-генетиков, необходимость в котором давно наметилась.

Итак, к чему же мы пришли? Анализ генетических свидетельств и, в особенности, данных исследований митохондриальной ДНК, так и не дал ясной картины происхождения современного человека. К примеру, некоторые ученые утверждают, что небольшая группа вида Homo произошла от Australopithecus примерно 2 000 000 лет назад в Африке. Эта группа развилась в Homo Erectus и затем распространилась по всей Евразии, положив начало неандертальцам и близким к ним группам. Около 100 000 лет назад небольшая группа Homo sapiens с современным анатомическим строением появилась в Африке и затем распространилась по всему миру, сменив более древние группы Homo Erectus и неандертальцев без значительного смешения с ними (Vigilant et al. 1991; Stoneking et al. 1986). Эти анатомически современные люди затем развились в разных регионах мира в различные расы, которые мы встречаем в настоящее время. Другие ученые, исходя из тех же генетических, археологических и палеонтологических свидетельств, приходят к выводу, что различные расы анатомически современных людей возникли одновременно в разных частях мира непосредственно из групп Homo erectus и неандертальцев, которые населяли те части света (Templeton. 1993). Согласно этой теории, люди с современным анатомическим строением возникли большими группами в обширных географических областях, а не в маленькой замкнутой группе, ограниченной небольшим географическим регионом. Третьи ученые полагают, что изначально существовала небольшая группа анатомически современных людей, ограниченная небольшим ареалом распространения, с той разницей, что разделение на расы произошло среди них еще до того, как они распространились за границы региона своего обитания. После этого расовые группы мигрировали в другие регионы и там увеличили свою численность (Rogers, Jorde. 1995. P. 1). Вкратце можно лишь сказать, что с генетическими свидетельствами и их трактовкой связана большая неопределенность.

Y-хромосомы

Обсуждая митохондриальную ДНК, я вкратце упомянул ядерную ДНК, которая находится в ядрах клеток человека, и в связи с этим привел несколько примеров. Давайте теперь детально рассмотрим другой пример подобного рода свидетельства – Y-хромосому.

У человека насчитываются 23 пары хромосом в ядре каждой клетки. Одна из этих пар определяет пол индивидуума. Пара половых хромосом у женщин состоит из двух X-хромосом (ХХ). Пара половых хромосом у мужчин состоит из одной Х-хромосомы и одной Y-хромосомы (ХY).

Итак, что определяет пол каждого из нас? Репродуктивные клетки (сперматозоид и яйцеклетка) отличны от других клеток тела. Нерепродуктивные клетки имеют полный комплект из 23 пар хромосом, то есть из 46 хромосом. Что же касается сперматозоида и яйцеклетки, то в них содержится только половина от этого числа – по 23 хромосомы вместо 23 пар хромосом. Когда сперматозоид и яйцеклетка сливаются, восстанавливается полный комплект хромосом (46 или 23 пары). В яйцеклетке, возникшей в женском организме, всегда присутствует Х-хромосома, поскольку женская пара половых хромосом состоит из двух этих хромосом. Поэтому при разделении пары ХХ в каждой яйцеклетке всегда оказывается по одной Х-хромосоме. Но поскольку у мужчин половые хромосомы образуют пару XY, при делении в сперматозоиде может оказаться либо X-хромосома, либо Y-хромосома. При слиянии сперматозоида, несущего Х-хромосому, с яйцеклеткой в оплодотворенной яйцеклетке образуется пара половых хромосом XX, в результате чего из нее развивается девочка. Если же с яйцеклеткой сольется сперматозоид с Y-хромосомой, то в яйцеклетке возникнет пара половых хромосом XY, – и родится мальчик. Y-хромосома передается только от отца к сыну. Женщины не несут в себе этой хромосомы.

Некоторые участки хромосомы подвержены процессу так называемой рекомбинации, когда части одной хромосомы заменяются частями другой. Однако большой участок Y-хромосомы не поддается таким изменениям. Теоретически, единственные изменения, которые могут произойти с этим участком Y-хромосомы, будут носить характер случайных мутаций. Y-хромосома представляет собой мужской вариант митохондриальной ДНК, передаваемой только от матери и также не поддающейся изменениям, за исключением случаев произвольных мутаций. Поэтому Y-хромосома может быть использована при исследованиях происхождения человека таким же образом, как и митохондриальная ДНК, – в качестве молекулярных часов и определителя географического местонахождения. Некоторые исследователи предположили, что помимо африканской Евы существовал также и африканский Адам или, как его еще называют, «Y-хромосомный Адам». Однако мы увидим далее, что заключения, сделанные на основании исследований Y-хромосомы, грешат многими недостатками, и поэтому некоторые исследователи рассматривают «Y-хромосомного Адама» как «статистическую условность – плод сомнительных эволюционных допущений» (Bower. 2000a).

В номере журнала «Science» от 26 мая 1995 года Роберт Л. Дорит из Йельского университета и его соавторы опубликовали результаты исследования вариаций гена ZFY в Y-хромосоме 38 человек из разных частей мира. Они сравнивают эти вариации с вариациями, обнаруженными у шимпанзе. Переводя величину вариаций на шкалу лет, Дорит исходил из предположения, что человеческая ветвь отделилась от ветви шимпанзе около 5 миллионов лет назад. Это позволило ему прийти к выводу, что все исследованные им люди происходили от одного предка, который жил примерно 270 000 лет назад. Эта цифра отличается от общепринятой 200 000 лет, полученной на основании исследований митохондриальной ДНК (Adler. 1995). Однако в статье, опубликованной в «Science News», указывается на то, что «Дорит и его соавторы признают, что объяснить полученные ими результаты можно и другими факторами, помимо существования единого предка», и что в своих заключениях они полагались на большое число «вспомогательных допущений» (Adler. 1995).

В номере журнала «Nature» от 23 ноября 1995 года Майкл Хаммер из Аризонского университета в Тусоне публикует результаты исследования вариаций Y-хромосомы у восьми африканцев, двух австралийцев, трех японцев и двух европейцев. Он приходит к выводу, что у них всех был общий предок, который жил 188 000 лет назад. Географическое местоположение общего предка не было точно определено. Хаммер также предположил, что повторный анализ данных, полученных Доритом, показал бы, что ближайший предок исследованных индивидуумов жил в промежутке 160 000–180 000 лет назад (Ritter. 1995).

В 1998 году Хаммер и несколько его соавторов опубликовали результаты более тщательного исследования вариаций Y-хромосомы человека. Согласно полученным данным, возраст исследованных вариаций составил 150 000 лет, и корнем статистического древа была названа африканская группа. Используя гнездовой метод корневого анализа, ученые, на основании исследования Y-хромосомы, выявили два пути миграции ее носителей. Один из путей направлялся из Африки в Старый Свет, а другой – из Азии обратно в Африку. «Таким образом, высокий уровень генетических вариаций Y-хромосомы, обнаруженный ранее в Африке, может отчасти быть результатом такой двусторонней миграции», – утверждают исследователи (Hammer et al. 1998. P. 427). Хаммер и группа других ученых пришли к похожим выводам, исследовав в 1997 году участок YAP Y-хромосомы (Hammer et al. 1997). Миграция населения Азии в Африку представляет немалый интерес в свете сведений, содержащихся в исторических трактатах Древней Индии, согласно которым, аватарой Парашурамой деградировавшие представители царских династий были изгнаны из Индии в другие части мира, где, согласно некоторым источникам, они смешались с местным населением.

В номере журнала «Nature Genetics» за ноябрь 2000 года Питер Андерхилл и его соавторы утверждают, что, по данным исследования Y-хромосомы, ближайший общий предок современного человека по мужской линии обитал в Восточной Африке, откуда переселился в Азию 39 000–89 000 лет тому назад. Для сравнения, данные исследования митохондриальной ДНК показывают, что наша общая прародительница по женской линии покинула Африку 143 000 лет назад. Андерхилл делает простой вывод, что скорость изменений Y-хромосомы и митохондриальной ДНК различны (Bower. 2000a). Но как и в случае с митохондриальной ДНК, никому доподлинно не известна скорость изменений Y-хромосомы. В своей статье в «Science News» Бауэр утверждает: «Новый анализ показал, что участки Y-хромосомы отличаются значительно меньшим числом вариаций, чем участки ДНК, изученные в других хромосомах. Исследователи полагают, что низкий уровень генетических вариаций может являться следствием естественного отбора, то есть, в нашем случае, результатом распространения выгодных мутаций Y-хромосомы после миграции людей из Африки. Ученые признают, что этот сценарий сводит на нет показания молекулярных часов, делая невозможным получение достоверной информации о скорости мутаций путем исследования Y-хромосомы» (Bower. 2000a). Генетик Розалина М. Хардинг из оксфордского медицинского центра Джона Рэдклиффа пишет: «Мы не знаем, как естественный отбор и структура населения отражаются на Y-хромосоме. Я бы не стала делать никаких эволюционных заключений на основе данных [полученных Андерхиллом]» (Bower. 2000a). Андерхилл, к примеру, полагает, что Африка была родиной наиболее позднего общего предка современных людей, поскольку он обнаружил у африканцев наибольшее число вариаций Y-хромосомы. Однако Хардинг отмечает, что эти вариации могли возникнуть не потому, что в Африке обитали первые люди, а потому, что ее население было многочисленнее, чем население других частей мира. Кроме того, генные вариации у людей, живших за пределами Африки, могли сократиться вследствие распространения среди них особенно благоприятных генов. Бауэр пишет: «Если критики правы, Y-хромосомный Адам мог быть исторической, а не доисторической личностью» (Bower. 2000а). Иными словами, люди могли существовать многие миллионы лет назад, а генетические вариации, которые мы наблюдаем сейчас, могут отражать лишь недавние генетические события в этой долгой истории. Более ранние результаты могли просто исчезнуть со временем.

Самые последние исследования Y-хромосомы показывают, что делать однозначные выводы на их основе пока еще рано. Группа китайских и американских исследователей (Ke et al. 2001) взяла образцы у 12 127 мужчин из 163 народностей Восточной Азии и исследовала три маркера Y-хромосомы: YAP, M89 и M130. Согласно полученным данным, три мутации этих маркеров (YAP+, M89T и M130T) возникли в Африке, и их происхождение можно проследить до другой африканской мутации M168T, которая появилась на африканском континенте 35 000–89 000 лет назад. Исследователи обнаружили, что испытуемые из Восточной Азии имели одну из трех африканских мутаций, происходящих от мутации М168Т. Они сочли это указанием на то, что мигрировавшие из Африки народы полностью вытеснили гоминидов – коренное население Восточной Азии. Иначе были бы обнаружены Y-хромосомы, не имеющие этих трех африканских маркеров.

По словам Ке и его соавторов, «было наглядно продемонстрировано, что все Y-хромосомные гаплотипы, обнаруженные за пределами Африки, моложе 39 000–89 000 лет и происходят из Африки» (Ке et al. 2001. P. 1152). Однако они отмечают, что «эти данные очень приблизительны и зависят от нескольких допущений». Эти допущения не были прямо упомянуты в их отчете. Авторы не отрицают возможности «селекционной чистки, которая удалила устаревшую информацию из Y-хромосомы у современного населения Восточной Азии». Также они признают, что информация Y-хромосомы «подвержена стохастическим процессам, т.е. генетическому сдвигу, который также мог привести к уничтожению архаичных родословных».

Ке и его соавторы признают существование и другой проблемы, которая, по их словам, «создает затруднения» (Ке et al. 2001. P. 1152). Они заметили, что возраст наиближайшего общего предка, определенный путем анализа вариаций митохондриальной ДНК и ДНК Y-хромосомы, сильно отличается от тех цифр, что были получены путем анализа вариаций ДНК X-хромосомы и аутосом (неполовых хромосом). Они пишут: «Возраст общего предка, полученный при анализе генов аутосом и Х-хромосом, составляет 535 000–1 860 000 лет, что намного больше, чем получается при анализе митохондриальной ДНК и Y-хромосомы» (Ке et al. 2001. P. 1152). Авторы пускаются в предположения, что во времена массовых миграций из Африки мужчин было в 3–4 раза больше, чем женщин, что привело к появлению больших вариаций в ДНК аутосом и Х-хромосом.

По мнению Милфорда Уолпоффа, убежденного сторонника теории об одновременном происхождении человека в разных регионах мира, нет ничего удивительного в том, что Y-хромосома имеет признаки африканского происхождения, поскольку по численности населения Африка долгое время превосходила все другие регионы. Поэтому африканское население положило начало наибольшему количеству Y-хромосомных родословных, которые со временем вытеснили другие родословные, изначально существовавшие параллельно африканским (Gibbons. 2001. P. 1052). Энн Гиббонс говорит о трудностях в проверке надежности данных, полученных в результате анализа Y-хромосомы и митохондриального ДНК. В идеале, требовалось бы сравнить эти данные с данными исследований ДНК многих других хромосом в ядре клетки, чтобы выяснить, соответствуют ли они заключениям о возрасте и географическом источнике человека c современным анатомическим строением. Однако Гиббонс отмечает: «Датирование ядерных родословных сопряжено со многими сложностями, поскольку большинство ядерных ДНК, в отличие от ДНК митохондрий и Y-хромосом, перемешиваются, когда гомологические хромосомы обмениваются своим генетическим материалом при слиянии яйцеклетки и сперматозоида. Это делает определение генетической родословной настолько сложным, что многие генетики опасаются, что им никогда не удастся подтвердить или опровергнуть полноту замещения. Розалина Хардинг говорит: „Генетические тесты не дают ясной картины. На этот вопрос могут ответить только ископаемые“» (Gibbons. 2001. P. 1052).

Люди и неандертальцы

Как мы уже убедились, одна группа ученых утверждает, что современные люди возникли от обезьяноподобного Homo erectus в разных частях мира, пройдя стадию неандертальцев или неандерталоподобных. Согласно этому взгляду, называемому мультирегиональной гипотезой, современное население Азии произошло от азиатского Homo erectus, пройдя через стадию неандерталоподобных. Аналогично этому, предполагается, что современные европейцы происходят от типичных западноевропейских неандертальцев.


  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47