Современная электронная библиотека ModernLib.Net

Устранение неисправностей и ремонт ПК своими руками на 100%

ModernLib.Net / Компьютерное железо / Артур Газаров / Устранение неисправностей и ремонт ПК своими руками на 100% - Чтение (Ознакомительный отрывок) (Весь текст)
Автор: Артур Газаров
Жанр: Компьютерное железо

 

 


Артур Газаров

Устранение неисправностей и ремонт ПК своими руками на 100%

Введение

В наш век стремительного взлета цифровых технологий люди полностью попали в зависимость от компьютеров.

Каждый современный человек когда-либо сталкивался с неисправностями компьютера, и в будущем также никто не застрахован от проблем, cвязанных с неполадками вычислительной техники. Что же делать – обратиться в сервис или все же разобраться во всем самому?

Конечно, проще набрать телефон мастерской и «ни о чем не думать»…

Далеко не всегда такой подход оправдан. Часто не хватает времени на то, чтобы отвезти технику в ремонт, ждать, пока ее протестируют, закажут необходимую деталь, починят. Неполадки могут возникнуть в самое неподходящее время, когда нужно срочно работать на компьютере, вместо того чтобы ждать мастера. К тому же немало дефектов не столь существенны, чтобы из-за них тратить драгоценное время и деньги на ремонт. Еще один аргумент в пользу того, чтобы во все вникнуть самому – компьютер будет эксплуатироваться более грамотно, своевременно выполнятся профилактические работы, и многие дефекты просто не возникнут, потому что ваши оперативные и грамотные действия предупредят возможные осложнения. Вдобавок, научившись обслуживать компьютер, вы сможете помочь знакомым и близким и даже получить возможность дополнительного заработка. Ведь с каждым днем компьютеры все больше и больше используются в различных сферах деятельности человека, что делает сервисные услуги все более востребованными.

В книге рассматриваются практические вопросы, связанные с ремонтом персональных компьютеров в домашних или офисных условиях.

Глава 1

Что нужно знать, перед тем как ремонтировать ПК

Из истории вычислительной техники

Счетные устройства появились, как только человек задумался о количественном учете.

С тех пор устройства, помогающие человеку учитывать материальные ценности, различные ресурсы и производить научные и технические расчеты совершенствуются с нарастающей скоростью. Вычислительная техника прошла долгий и интересный путь развития.

Все началось со счетных палочек, точно так же в начальных классах они используются для обучения.

Еще до нашей эры появилось первое счетное устройство – абак (счеты): греческий, египетский, римский, а также одна из разновидностей – китайский суан-пан и японский соробан. Абак разделяли полосы (углубления, использовались струны), счет осуществлялся с помощью размещенных на полосах камней или других подобных предметов – косточек, жетонов, зерен кукурузы.

В начале XVII века шотландский математик Джон Непер, вошедший в историю как создатель таблицы логарифмов, изобрел математический набор – палочки Непера. С помощью этого инструмента извлекали квадратные и кубические корни, а также умножали и делили большие числа.

В 1623 году появилась логарифмическая линейка, использующая таблицы Непера для упрощения вычислений.

Немецкий ученый Вильгельм Шиккард спроектировал первую механическую суммирующую машину (6-разрядная), в 1623 году появились «Считающие часы» – первый механический калькулятор, использующий звездочки и шестеренки. Изобретение до середины XX века оставалось неизвестным, не оказывая влияния на развитие вычислительной техники.

В 1642 году появилась 8-разрядная суммирующая машина Блеза Паскаля. В ней использовались взаимосвязанные колесики с нанесенными цифрами от 0 до 9. Когда первое колесико производило полный оборот от 0 до 9, начинало вращаться второе колесико. Когда оно достигало цифры 9, вращалось третье и так далее. Машина Паскаля складывала и вычитала, умножала и делила лишь путем многократного сложения и вычитания.

Готфрид Вильгельм фон Лейбниц в 1673 году сконструировал машину «четырех действий», она выполняла сложение, вычитание, умножение и деление, извлечение квадратного корня. В отличие от Паскаля Лейбниц использовал в своей машине цилиндры с нанесенными на них цифрами. Специально для нее Лейбниц впервые применил двоичную систему счисления.

В 1804 году француз Жозеф Мари Жаккар сконструировал ткацкий станок для крупноузорчатых тканей, в котором использовались перфорированные карточки с разным расположением отверстий, которые давали разные узоры на плетении ткани. Его идея в дальнейшем использовалась для обработки информации с помощью компьютеров.

В 1820 году француз Шарль Ксавье Тома де Кольмар создал первый коммерческий арифмометр, производивший умножение и деление.

В 1823 году английский математик Чарльз Бэббидж приступил к постройке разностной машины, которая должна была производить вычисления с точностью до 20 знаков после запятой. Постройкой машины Бэббидж занимался 10 лет, но так и не закончил. В 1830 году он разработал проект аналитической машины для выполнения научных и технических расчетов. В этом проекте предугаданы все основные устройства ЭВМ и задачи, которые могут решаться с ее помощью. В качестве носителей информации при вводе и выводе Бэббидж предлагал использовать перфокарты. Управление машиной предполагалось программным путем.

Первым программистом считается Ада Лавлейс. Она составила первые в мире программы для аналитической машины Бэббиджа, разработала принципы программирования, предусматривающие повторение одной и той же последовательности команд и выполнение команд при определенных условиях. Разработки Ады Лавлейс используются и в современной вычислительной технике.

В середине XIX века британский математик Джордж Буль ввел новую математическую логику. Логические операторы И, ИЛИ и НЕ осуществляют связи в логическом высказывании и благодаря этому дают возможность развиться новым высказываниям. Эта логика, известная как алгебра Буля, лежит в основе компьютерной обработки информации.

В 1885 году американский изобретатель Уильям Барроуз представил самопишущий арифмометр с клавиатурой для ввода данных и печатным устройством для вывода результатов вычислений.

В 1888 году американский инженер Герман Холлерит сконструировал первую электромеханическую счетную машину – табулятор. В ее составе – реле, счетчики, сортировочный ящик. Машина считывала и сортировала статистические записи на перфокартах. Компания Холлерита в дальнейшем образовала костяк широко известной IBM – International Business Machines Согрогайоп.

В 1930 году американский ученый Ванневар Буш разработал дифференциальный анализатор – электромеханический аналог компьютера. Машина Буша быстро решала сложные математические задачи и приводилась в действие электричеством, для хранения информации в ней использовались электронные лампы.

В 1936 году английский математик Алан Тьюринг разработал гипотетический механизм, создавший теоретическую основу для современных компьютеров. «Машина Тьюринга» могла решать различные математические или логические задачи. Она обладала основными свойствами современного компьютера: пошаговым выполнением математических операций, запрограммированных во внутренней памяти.

В 1937 году Джордж Стибиц, создал первое в США электромеханическое устройство, выполняющее операцию двоичного сложения, – двоичный сумматор. Он основывался на логике Буля, электромеханические реле работали как логические вентили. Двоичный сумматор Стибица неотъемлемая часть цифрового компьютера.

В 1938 году сотрудник Массачусетского технологического института Клод Шеннон сформулировал принципы логического устройства компьютера, использущие электрические схемы для решения задач булевой алгебры.

В 1941 году немецкий инженер Конрад Цузе разработал первый вычислительный автомат с программным управлением. Это первый компьютер – Z3, основанный на электромеханических реле, работавший в двоичной системе счисления. Числа записывались в память и считывались из нее с помощью электрических сигналов, проходивших через реле. Программа кодировалась на перфоленте.

В 1942 году американские физики Джон Атанасов и Клиффорд Берри разработали вычислительное устройство на вакуумных трубках – машина Атанасоффа – Берри, или ABC. Вычисления производились с помощью 300 вакуумных трубок, машина использовала двоичный код и могла осуществлять логические операции. Для ввода и вывода данных применялись перфокарты.

До 1942 года все вычислительные машины работали на механических или электромеханических элементах – реле. С 1942 года для хранения и обработки информации начали использоваться электронные лампы, увеличившие скорость работы в тысячу раз.

В 1943 году в секретной правительственной лаборатории Великобритании построили первую вычислительную машину, в которой вместо электромеханических реле применялись 2000 электронных вакуумных ламп. ЭВМ предназначалась для расшифровки вражеских посланий, закодированных германской шифровальной машиной «Энигма».

В 1944 года в Гарвардском университете продемонстрировали вычислительную машину «Марк-1», разработанную по заказу ВМС США весом около 35 тонн. В ней использовались электромеханические реле. Машина оперировала десятичными числами, они хранились в закодированном виде на бумажной перфоленте. Машина могла манипулировать числами длиной до 23 разрядов. Для перемножения двух 23-разрядных чисел ей требовалось 4 секунды.

В 1945 году американский математик Джон фон Нейман опубликовал знаменитый «Предварительный доклад о машине EDVAC». В нем он описал принципы организации ЭВМ и ее логические свойства. Ученый предложил записывать рабочую программу в память машины в закодированном виде. Архитектура компьютера получила название «фон Неймановской архитектуры ЭВМ» и легла в основу будущих моделей компьютеров.

В 1946 году по заказу военного ведомства США была разработана первая универсальная электронная вычислительная машина ENIAC. Ее вес – 30 тонн, она размещалась на 170 м2. ЭВМ насчитывала 18 000 электронных ламп. Машина работала в двоичной системе и производила 5000 операций сложения или 300 операций умножения в секунду. Данные для расчетов вводились с помощью перфокарт.

Электронные лампы имели низкую надежность и часто выходили из строя.

В 1947 году американцы Джон Бардин, Уолтер Браттейн и Уильям Брэдфорд Шокли изобрели стабильный переключающий полупроводниковый прибор – транзистор. Он выполнял все те же функции, что и электронные лампы. Но при этом транзисторы занимали существенно меньший объем и потребляли значительно меньше электроэнергии.

В 1949 году в Кембриджском университете была создана первая ЭВМ, в которой хранилась программа – EDSAC (Electronic Delay Storage Automatic Calculator – электронный калькулятор с памятью на линиях задержки).

В 1949 году Джей Форрестер из Массачусетского технологического института, изобрел магнитное запоминающее устройство.

Первую ЭВМ в СССР построил Институт математики АН УССР под руководством академиков С. А. Лебедева и М. А. Лаврентьева в 1950 году. Она называлась МЭСМ – малая электронная счетная машина. Быстродействие составляло 50 операций в секунду; емкость ОЗУ – 31 число и 63 команды, тактовая частота – 5 кГц.

В 1951 году Джон Мокли и Преспер Эккерт разработали вычислительную машину UNIVAC, которая предназначалась для коммерческих расчетов. Это был первый компьютер, выпускавшийся серийно.

В 1953 году в СССР была запущена БЭСМ, построенная под руководством С. А. Лебедева. Это была самая быстродействующая ЭВМ в Европе. Она выполняла до 10 тысяч операций в секунду. Для ввода информации применялась перфолента, быстродействующее фотопечатающее устройство осуществляло вывод информации.

В 1953 году в Советском Союзе серийно выпускалась большая вычислительная машина «Стрела». Автор проекта – Ю. А. Базилевский. Под руководством члена-корреспондента АН СССР И. С. Брука созданы универсальные машины М-2 и М-3.

В 1954 году начался серийный выпуск универсальной вычислительной машины «Урал-1», позже «Урал-4» разработки Б. И. Рамеева. Все эти ЭВМ применялись в народном хозяйстве.

В 1959 году были изобретены интегральные микросхемы. На одной кремниевой пластинке разместились сотни и тысячи электронных компонентов. Скорость вычислений увеличилась в десятки раз по сравнению с транзисторными схемами, соответственно, габариты и вес вычислительной техники заметно уменьшились.

В 1965 году компания Digital Equipment выпустила первый коммерческий миникомпьютер PDP-8.

В 1972 году была разработана ЕС ЭВМ – Единая Серия вычислительных машин. Это были стандартизированные комплексы для вычислительных центров. Они имели общую систему команд.

Из истории персональных компьютеров

Персональный компьютер (ПК) изменил отношение человечества к вычислительным ресурсам. С каждой новой моделью ПК человек все больше и больше функций перекладывал на плечи машины, начиная простыми вычислениями и кончая бухгалтерским учетом, проектированием.

Со многими подобными задачами ПК справляется весьма неплохо, подменяя человека в нетворческих областях деятельности. Теперь уже неисправности, сбои и простои вычислительной техники стали не просто нежелательными; теперь они приводят к прямым экономическим убыткам и другим недопустимым последствиям.

Микроминиатюризация и широкое развитие микросхем привели к тому, что ЭВМ смогла разместиться на письменном столе. В 1973 году компания Xerox представила первый персональный компьютер Alto. В нем программы и файлы впервые выводились на экран в виде «окон».

В 1975 году был выпущен первый коммерческий ПК Altair-8800, построенный на базе микропроцессора Intel 8080. ОЗУ составляло 256 байт. ПК управлялся специальной панелью переключателей. Для ввода и вывода данных устанавливался дисковод 8-дюймовых гибких дисков, приобретавшийся отдельно. Первый вариант микропроцессора i8080 был изготовлен в 48-контактном планарном корпусе, максимальная тактовая частота составляла 2 МГц. Однако процессор имел серьезную недоработку, вызывающую «зависание». Оживить систему позволял только сигнал «reset». Исправленный и улучшенный вариант процессора – 8080А увидел свет через полгода. Изготовлен в корпусе DIP-40, максимальная тактовая частота возросла до 2,5 МГц.

В 1976 году Стив Джобс и Стив Возняк в Пало-Альто собрали действующую компьютерную плату под названием Apple I. Она размещалась в деревянном корпусе, не имела клавиатуры и экрана. На плате был собран процессор, оперативная память в 8 Кбайт, и предусматривалась возможность вывода информации на экран.

В 1977 году Возняк и Джобс разработали первый комплектный РС – Apple II, в пластиковом корпусе, с интегрированной клавиатурой, в качестве дисплея использовался телевизор. В том же году Commodore представила ПК под названием РЕТ.

В июне 1978 года фирма Intel создала первый 16-разрядный микропроцессор i8086. Благодаря сегментной организации памяти он мог адресовать до 1024 Кбайт оперативной памяти. В i8086 использовался набор команд, применяемый также и в современных процессорах. С появлением процессора i8086 стала известной архитектура x86. Тактовая частота процессора составляла от 4 до 10 МГц.

Процессор 8086 получил популярность в основном благодаря компьютеру Compaq DeskPro.

В 1980 году фирма Osborne Computer приступила к выпуску первых портативных ПК, которые имели габариты чемоданчика и весили 11 кг.

В 1981 году IBM выпустила микрокомпьютер IBM PC с открытой архитектурой, основанный на 16-разрядном микропроцессоре 8088 фирмы Intel. 16-битный процессор i8088 с 8-битной шиной данных имел тактовую частоту от 5 до 10 МГц. ПК был оборудован монохромным текстовым дисплеем, двумя дисководами для 5-дюймовых дискет на 160 Кбайт, оперативной памятью 64 Кбайт.

Компьютер IBM PC XT (eXtended Technology) появился в 1983 году и имел объем ОЗУ 256 Кбайт и жесткий диск 10 Мбайт. Тактовая частота процессора – 5 МГц.

ПК IBM PC AT (Advanced Technology) был представлен в 1984 году. Компьютер работал на микропроцессоре Intel 80286 и архитектуре ISA, поставлялся с жестким диском объемом 20 Мбайт. Использование микропроцессора Intel 80286 (выпускался с 1 февраля 1986 г.) позволило перейти на шину AT bus: 16-разрядная шина данных, 24-битная шина адреса. Появилась возможность адресовать ОЗУ до 16 Мбайт (в сравнении с 640 Кбайт оригинальной модели IBM PC). Материнская плата предусматривала батарейку питания микросхемы CMOS, в памяти (емкость – 50 байт) сохранялось время. Тактовая частота процессоров: 80286-6 – 6 МГц, 80286-8 – 8 МГц, 80286-10 – 10 МГц, 80286-12 – 12,5 МГц.

В октябре 1985 года Intel создала первый 32-разрядный микропроцессор i80386, который включал в себя около 275 тысяч транзисторов. Первым ПК, использующим этот микропроцессор, был Compaq DeskPro 386. Более дешевая альтернатива 32-разрядному процессору i80386, который впоследствии получил окончание DX, появилась только в июне 1988 года. Именно 386-й процессор обеспечил заметный прирост тактовой частоты персональных компьютеров. Разные модели 386-х процессоров работали с тактовыми частотами – 16, 20, 25, 33, 40 МГц.

В 1989 году Intel выпустила микропроцессор 486DX. Он насчитывал 1,2 миллиона транзисторов на одном кристалле и был полностью совместим с процессорами х86. В этой микросхеме впервые были объединены центральный процессор, математический сопроцессор и кэш-память. Тактовые частоты различных модификаций 486-х процессоров составляли от 16 до 150 МГц. Компьютеры на базе 486-го процессора достигли частоты 133 МГц (так называемые DX4). Процессоры 486 DX2 имели коэффициент умножения 2 (при частоте системной шины 50 МГц частота процессора составляла 100 МГц). Позже производились процессоры с индексом DX4. Коэффициент умножения у них составлял не 4, а 3. После ухода с рынка 486-х процессоров производства Intel компания AMD выпустила процессоры 486DX4-120 и 486DX4-133. В результате введения множителей впервые возникло такое понятие, как разгон (англ. overclocking) – увеличение производительности повышением тактовой частоты шины или коэффициента умножения. В продаже встречались системы, где процессоры i486 разгонялись до 160 МГц.

В марте 1993 года Intel приступила к поставкам версий 66 и 60 МГц процессора Pentium. ПК на базе Pentium, полностью совместимы с компьютерами, использующими микропроцессоры i8088, i80286, i80386, i486. Новый процессор содержал около 3,1 миллиона транзисторов и имел 32-разрядную адресную и 64-разрядную внешнюю шину данных.

В мае 1997 года компания Intel представила процессор Pentium II, созданный на базе Pentium Pro. В ядро P6 был добавлен блок обработки MMX-инструкций. Из корпуса процессора кэш-память второго уровня была вынесена, и это способствовало массовому распространению Pentium II. Тактовые частоты процессоров Pentium II заметно возросли. У разных моделей составляли: 233, 266, 300, 333, 350, 400, 433, 450, 466, 500, 533 МГц.

32-битный микропроцессор шестого поколения Intel Pentium III был выпущен компанией Intel в феврале 1999 года. Он практически копировал Pentium II, но включал в себя новые возможности: 70 вещественных инструкций SSE (Streaming SIMD Extensions, именовавшихся также MMX2), ориентированных на поддержку мультимедиа; улучшенный контроллер кэш-памяти первого уровня. Тактовые частоты процессоров Pentium III (Katmai) составляли – 450, 500, 533, 550, 600 МГц. На базе Coppermine – от 533 до 1133 МГц. У процессоров Pentium III на ядре Tualatin – от 1000 до 1400 МГц.

В конце ноября 2000 года Intel представила процессоры Pentium 4 с тактовой частотой более 1 ГГц, построенные на основе архитектуры NetBurst и использующие быструю память Rambus с эффективной частотой системной шины 400 МГц. Процессоры содержали 144 дополнительные инструкции SSE2. Тактовые частоты первых процессоров Pentium 4 варьировались от 1,4 до 2,0 ГГц. В следующих модификациях тактовая частота выросла с 2,2 до 3,8 ГГц.

В июле 2006 года Intel создала двухъядерные процессоры – Core 2, первыми процессорами этой линейки стали Intel Core 2 Duo и Intel Core 2 Extreme. Процессоры были разработаны на базе новой архитектуры Intel Core, которую компания называет самым существенным этапом в развитии своих микропроцессоров с момента появления торговой марки Intel Pentium в 1993 году. Используя технологию EM64T, процессоры Intel Core 2 могут работать как в 32-битном, так и в 64-битном режиме. Основными отличиями новых процессоров от семейства Pentium 4 являются низкое тепловыделение и энергопотребление и большие возможности для разгона. Частота процессоров Core 2 Duo составляет от 1,5 до 3,5 ГГц.

В начале 2007 года был представлен Core 2 Quad – четырехъядерный процессор. Тактовые частоты – от 2,33 до 3,2 ГГц.

В январе 2010 года появились процессоры Intel Core i3. В них добавлены так называемые «графические» процессоры, они проводят вычисления в «графическом» режиме. Встроена функция, обеспечивающая «разумность» в работе, авторазгон. При средней и низкой нагрузках работает на номинальной производительности и экономит энергию. Повышение нагрузки вызывает автоматическое увеличение производительности процессора. Увеличен размер кэша (внутренняя оперативная память процессора), он динамически распределяется между ядрами – зависит от нагрузки. Новые процессоры греются сильнее, особенно при авторазгоне. Соответственно, требуют более эффективной системы охлаждения. Тактовые частоты процессоров i-Series (i3, i5, i7) – от 2,66 до 3,6 МГц.

Из чего состоит ПК

На сегодняшний день существует множество различных моделей персональных компьютеров. В целом структура большинства ПК сводится к стандартной блок-схеме.

Обычно домашний или офисный ПК состоит из системного блока, монитора, клавиатуры, мыши и различных периферийных устройств: принтера, сканера, модема, акустических систем, различных игровых манипуляторов.

«Мозг и сердце» ПК расположены в системном блоке, где производятся вычисления и хранятся их результаты. Системный блок состоит из корпуса, в который вмонтированы импульсный блок питания, материнская плата, с установленными на ней процессором, модулями оперативной памяти, видеокартой и другими платами расширения. Также в системном блоке находятся: жесткий диск, привод компакт-дисков – CD либо DVD-ROM-дисковод, флоппи-дисковод, считыватель флеш-карт и т. д.

Корпус – это металлическая коробка, основа, внутри которой монтируются (собираются) комплектующие. Обычно корпус поставляется вместе с блоком питания (БП). Но встречаются в продаже корпуса и без БП, в таком случае его нужно приобретать отдельно.

На передней панели корпуса находятся кнопка включения (Power), кнопка перезагрузки ПК (Reset) – в некоторых моделях корпусов она может отсутствовать, светодиоды индикации: питания и обращения к жесткому диску. Многие современные ПК имеют на лицевой стороне корпуса USB-разъемы для подключения флешек – такие носители информации практически уже полностью вытеснили дискеты 3,5".

Основа компьютера – материнская плата, на ней находятся соединительные разъемы для подключения внешних устройств, также к материнской плате подключаются разъемы БП. В большой квадратный разъем на материнской плате устанавливается процессор (ЦПУ). Соответственно, к плате механически крепится и охладитель процессора – радиатор с вентилятором. Установленные в материнской плате модули оперативной информации хранят результаты промежуточных вычислений. Микропроцессор получает программный код и исходные данные из оперативной памяти, а затем записывает в нее результаты вычислений, после чего они пересылаются на внешние запоминающие устройства. Скорость работы оперативной памяти выше, чем у жесткого диска и привода компакт-дисков. Быстродействие оперативной памяти соизмеримо со скоростью работы процессора. Однако оно меньше скорости кэш-памяти процессора.

При отключенном питании компьютера его оперативная память не содержит никакой информации. От объема оперативной памяти зависит производительность ПК, достаточный ее объем обеспечит более высокую скорость работы компьютера в различных ресурсоемких приложениях.

Вся основная информация в ПК хранится на жестком диске, который нередко называют винчестером по имени первой фирмы-производителя.

Чем выше объем жесткого диска, тем больше можно записать информации. При тенденции к росту объемов информации, емкость жестких дисков всегда востребована: операционная система, приложения, цифровая фотография, видеофильмы, музыка и т. д.

Видеокарта или видеоадаптер предназначены для формирования видеосигнала, подаваемого на монитор. Видеоадаптер может быть интегрированным – встроенным в материнскую плату, в таком случае можно обойтись без дополнительной видеокарты. Однако экономия средств – не всегда самое лучшее решение, когда планируется использование графических приложений: игры, графические редакторы, программы для проектирования.

Как правило, звуковая микросхема встроена во все материнские платы, и дополнительно звуковая карта приобретается в целях достижения более качественного звучания, работы со звуком, написания музыки и т. д.

ПК представляет собой блочно-модульную конструкцию, в которой комплектующие соединяются между собой с помощью стандартизированных разъемов. Благодаря этому ПК легко разбирать, собирать и модернизировать.

Как работает ПК

<p>Двоичный код</p>

Компьютер не умеет думать так, как думаем мы, – словами и образами. Он оперирует другими объектами. Процесс «мышления» ПК основан на двоичной системе счисления. В ней для записи чисел – представления данных используются всего лишь два символа, обычно 0 и 1, они называются битами. То есть бит это разряд двоичного числа. Каждый бит представляет собой одно из двух чисел: 1 или 0.

Один бит может определять два противоположных состояния: «Да» – «Нет», «Истина» – «Ложь», и т. д.

На базе двоичного кода строится вся работа компьютера – более сложные процессы. «Умная» электроника ПК четко различает два состояния: ноль и единица. Последовательность электрических сигналов физически представляет двоичные числа, что обеспечивает высокую надежность хранения и обработки данных.

В вычислительной технике применяется двоичная система по причине того, что для ее моделирования требуются электронные схемы только с двумя устойчивыми состояниями. Есть напряжение – нет напряжения, есть намагниченность – нет намагниченности и т. д.

В случае применения десятичной системы потребовались бы устройства, которые могли бы находиться в десяти разных состояниях.

Благодаря тому, что схемные элементы находятся лишь в двух состояниях, обеспечивается надежность, помехоустойчивость и простота операций.

Для выполнения логических преобразований используется булева алгебра, а с помощью комбинации нулей и единиц происходит передача информации.

Поскольку бит – слишком мелкая единица информации, то в вычислительной технике используется число битов, кратное 8. Оно называется байтом. «Слово» – 16 битов – 2 байта, 32 бита – 4 байта, 64 бита – 8 байтов.

С помощью комбинирования битов компьютеры отображают десятичные числа. Любое число от 0 до 255 представляется в виде восьмибитного числа. С помощью 16 битов можно представить числа в диапазоне от 0 до 65 535.

<p>Уровни логического нуля и единицы</p>

Цифровые микросхемы могут находиться в одном из двух состояний, они описаны двумя цифрами: 0 и 1, что физически реализовывается различными параметрами – ток или напряжение в цепях микросхемы, открытый или запертый транзистор на выходе микросхемы, светится или не светится светодиод (если он в составе микросхемы).

В качестве логических состояний цифровых микросхем принимается напряжение на их входе и выходе. Высокое напряжение считается единицей, а низкое напряжение – нулем. В идеале напряжение на выходе микросхем должно равняться напряжению питания или общего провода схемы. В реальности это не происходит.

Даже на полностью открытом транзисторе есть падение напряжения. В итоге на выходе цифровой микросхемы напряжение окажется меньше напряжения питания и больше потенциала общего провода. Поэтому напряжение, меньшее заданного уровня (уровень логического нуля), считается нулем, а напряжение, большее заданного уровня (уровень логической единицы), считается единицей. Если же напряжение на выходе микросхемы будет больше уровня логического нуля, но меньше уровня логической единицы, состояние микросхемы неопределенное.

В таблице приведены допустимые уровни выходных логических сигналов для ТТЛ-микросхем. Чем ближе выходное напряжение к напряжению питания или к напряжению общего провода схемы, тем выше КПД цифровой микросхемы.

Таблица 1.1. Уровни логических сигналов на выходе цифровых ТТЛ-микросхем

Напряжение с выхода одной микросхемы поступает на вход другой микросхемы по проводнику. В процессе передачи на этот проводник может наводиться напряжение от каких-либо генераторов помех (мобильные телефоны, различные импульсные генераторы, электро– и радиоприборы). Помехоустойчивость цифровых микросхем определяется максимальным напряжением помех, которое не приводит к превращению логического нуля в логическую единицу и зависит от разности логических уровней цифровой микросхемы. То же относится и к помехам, превращающим логический ноль в логическую единицу.

Таблица 1.2. Уровни логических сигналов на входе цифровых ТТЛ-микросхем

Микросхемы могут оказаться в неблагоприятных условиях – низкая температура, старение и коррозия материалов, воздействие радиации и т. д. Поэтому производители гарантируют срабатывание микросхем с некоторым запасом. Например, фирма Texas Instruments объявляет для своих микросхем входной уровень единицы – 2 В, а уровень нуля – 0,8 В.

Если напряжение на входе цифровой микросхемы приблизится к порогу, разделяющему уровень логического нуля и логической единицы микросхема перейдет в активный режим работы, и оба выходных транзистора могут оказаться открытыми. В результате микросхема может выйти из строя. Поэтому входы цифровых (особенно КМОП) микросхем не должны быть оставлены неподключенными! Если часть элементов цифровой микросхемы не используется, то их входы должны быть подключены к источнику питания или общему проводу схемы. Конкретное значение порога переключения для различных экземпляров микросхем и от серии к серии может изменяться в некоторых пределах. На вход логических микросхем нельзя подавать напряжение в пределах неопределенного состояния, а также оставлять их входы неподключенными.

<p>Логические элементы</p>

Цифровые микросхемы используют в своей работе базовые логические элементы, с помощью которых, как из «кирпичиков», строятся более сложные процессы:

• НЕ – инвертирование;

• И – логическое умножение;

• ИЛИ – логическое суммирование.

Логический элемент «НЕ»

Инвертор изменяет значение входного сигнала на прямо противоположное значение. Эту функцию можно записать в виде таблицы истинности. Вход у такого логического элемента один, и таблица истинности состоит только из двух строк.

Таблица 1.3. Таблица истинности логического инвертора

Вне зависимости от электрической схемы выполняется одна и та же функция. Чтобы не привязываться к конкретным электрорадиоэлементам схемы, были введены специальные условные графические обозначения.

Рис. 1.1. Условное графическое обозначение логического элемента «НЕ»


Логический элемент «И»

Схема, реализующая операцию логического умножения «И», может быть представлена в виде таблицы истинности. Элемент, который выполняет эту функцию, имеет два входа и обозначается «2И». Для элемента «2И» таблица истинности будет состоять из четырех строк.

Таблица 1.4. Таблица истинности схемы, выполняющей логическую функцию «2И»

Активный сигнал на выходе этого логического элемента появляется только тогда, когда и на первом, и на втором входе будут присутствовать логические единицы. Так реализуется функция «И».

Условно-графическое изображение схемы, выполняющей логическую функцию «И», на принципиальных схемах приведено на рис. 1.2. Изображение не зависит от аппаратной реализации, которая на уровне элементов осуществляет функцию логического умножения.

Рис. 1.2. Условное графическое обозначение логического элемента «И»


Функция логического умножения трех переменных представлена таблицей истинности, содержащей восемь строк.

Таблица 1.5. Таблица истинности трехвходовой схемы логического умножения «3И»

Элемент «ИЛИ»

Схема, реализующая операцию логического «ИЛИ» (дизъюнкция), описана таблицей, в которой использовано два аргумента. Поэтому элемент, выполняющий эту функцию, имеет два входа и обозначается «2ИЛИ». Для элемента «2ИЛИ» таблица истинности будет состоять из четырех строк.

Таблица 1.6. Таблица истинности схемы, выполняющей логическую функцию «2ИЛИ»

Для условного обозначения функции «ИЛИ» на принципиальных схемах используется специальный символ «1».

Рис. 1.3. Условное графическое обозначение логического элемента «ИЛИ»


Более подробно ознакомиться с цифровой микроэлектроникой можно в Интернете, а также в соответствующей литературе.

<p>Функция программного обеспечения</p>

Сам по себе ПК, манипулируя одними электрическими сигналами, не может представить информацию в том виде, как мы сегодня привыкли ее воспринимать, – на экране монитора, отпечатанной на листе бумаги. Результаты будут – но не в привычном для человека виде. Для представления информации в том виде, в котором привык видеть ее человек, последовательность импульсов нужно преобразовать.

Символы и буквы могут быть закодированы при помощи восьми двоичных символов.

Распространены таблицы ASCII с национальными расширениями, применяющиеся в DOS (которые можно использовать для записи текстов в микропроцессорах), и таблицы ANSI – в WINDOWS. В таблицах ASCII и ANSI первые 128 символов совпадают. В этой части таблицы содержатся символы цифр, знаков препинания, латинские буквы верхнего и нижнего регистров и управляющие символы. Национальные расширения символьных таблиц и символы псевдографики содержатся в последних 128 кодах этих таблиц, поэтому отображение русских текстов в операционных системах DOS и WINDOWS не совпадает.

Различное оборудование – платы расширения, периферийные устройства – работают по встроенному алгоритму. Чтобы ПК их лучше понимал или вообще воспринимал, существуют драйверы (поставляются на дисках вместе с устройствами), выполняющие функцию посредника между периферийным «железом» ПК и основным вычислительным блоком.

Программа – это последовательность операций, выполняемых компьютером для достижения поставленной задачи. Программа содержит описание действий, записанных на языке программирования или в машинном коде, которые должен выполнить компьютер в соответствии с алгоритмом решения конкретной задачи.

Программное обеспечение (ПО) можно разделить на прикладное, инструментальное и системное. Прикладные программы предназначены для решения пользовательских задач, а ПК только обеспечивает их решение. Это, например, графические редакторы, текстовые процессоры, издательские системы, САПР, СУБД, образовательные программы, игры.

Системное ПО служит для обеспечения работы самого ПК и решения задач, связанных с его функционированием. К системному ПО относятся операционные системы, файловые менеджеры, антивирусы, архиваторы, утилиты, драйверы.

Инструментальное ПО предназначено для проектирования, разработки и сопровождения программ. К нему относятся интегрированные среды разработки, трансляторы (компиляторы и интерпретаторы), ассемблеры, компоновщики, системы анализа кода, системы автоматизированного тестирования.

Что нужно для того, чтобы компьютер проработал долго и надежно

ПК – достаточно надежное и стабильное устройство. Если выполнять определенные несложные требования, то ваш компьютер прослужит достаточно долго. Однако если не обращать никакого внимания на правильную эксплуатацию, то вылезут многие возможные «болячки».

Прежде всего, ПК крайне не любит нестабильность питающего напряжения. Скачки в сети переменного тока, внезапные отключения электроэнергии крайне отрицательно сказываются на его «здоровье». Также в грозу не рекомендуется пользоваться ПК. Как только начинает «громыхать», немедленно выключите компьютер. В такое время могут выйти из строя БП, монитор, модем и т. д. Поэтому нужно не только выключить ПК, но и отсоединить от розетки сетевой провод.

Не располагайте ПК вблизи источников тепла: радиаторов, батарей, каминов, обогревателей. Весьма желательно защитить его от попадания прямых солнечных лучей. Позаботьтесь, чтобы на поверхность компьютера и на экран монитора не падали солнечные лучи. Сквозняки, температурные перепады не полезны для компьютера. Если вы принесли его в дом зимой, то дайте прогреться до комнатной температуры. Не включайте сразу – пусть он пролежит пару часов. Если на улице температура воздуха 30–40 градусов мороза, откуда занесен ПК, следует выждать не менее 4 часов, прежде чем включать. Иначе на элементах ПК образуется конденсат, возможен выход из строя комплектующих, образование микротрещин на платах и т. д.

ПК, как и любая электроника, не любит влаги; попадание в него жидкости приводит к выходу из строя его элементов. Старайтесь оградить элементы компьютера от попадания жидкости внутрь – не располагайте горшки с цветами на полках над ПК, не ставьте на системный блок кактусы и другие комнатные растения. Старайтесь не есть и не пить, работая за ПК. Кроме того, длительная работа во влажных помещениях способствует выходу его из строя в более короткие сроки, поэтому позаботьтесь о вентиляции и проветривании таких помещений.

Включенные вблизи мощные промышленные установки, генераторы, радиоизлучатели, СВЧ-системы могут привести к нестабильной работе ПК. Следует исключить возможность воздействия сильных электромагнитных помех.

И еще. Компоненты ПК не любят статическое электричество. Особенно это актуально при производстве его ремонта или сборке. Статическое электричество может накапливаться в организме человека от одежды, различных тканей – занавесей, ковриков и т. д. Также оно может передаваться от домашних животных. Попадание статического электричества на комплектующие – материнскую плату, видеокарту и т. д. – может вывести их из строя. Поэтому перед работой с ПК следует снять с себя статическое электричество – заземлиться. Для этой цели можно прикоснуться к батарее отопительной системы, водопроводу, помыть руки в потоке воды под краном.

Как и любая сложная электронная техника, компьютер не любит, когда в нем скапливается много пыли. Пыль – злейший враг электроники, и когда она забивается в контактные, токопроводящие участки платы, жесткого диска или других комплектующих, да еще при влажном воздухе, то может привести к выходу из строя микросхем и прочих электронных компонентов компьютера.

Периодически протирайте системный блок, монитор и прочую оргтехнику от пыли мягкой тряпочкой. Для чистки экрана монитора продаются специальные салфетки и чистящая жидкость.

Внутри системного блока также со временем накапливается достаточно много пыли, особенно на вентиляторах и возле них. Не следует протирать внутренности компьютера влажной или мокрой тряпкой. Лучше всего для этого подходит мягкая сухая малярная кисточка, позволяющая вымести пыль из любых закоулков.

Внутри системного блока можно и нужно периодически пылесосить. Делать это следует только при отключенном от сети компьютере, помогая себе кисточкой, аккуратно, стараясь не повредить технику. Не стоит при этом пылесосом нажимать на электрорадиоэлементы плат. Достаточно поднести к кисточке, и он подхватит пыль, вычищаемую кистью. Особенно тщательно пропылесосьте вентиляторы, на которых скапливается много пыли.

О технике безопасности

Не только ПК нужно ограждать от негативных внешних воздействий. Нельзя также забывать и о собственном здоровье. О нем нужно позаботиться в первую очередь, никакой компьютер, никакие неотложные задачи не стоят вашего здоровья. Если ПК можно легко починить, заменив неисправную плату, то вылечить себя гораздо труднее: больной орган – это не процессор или винчестер, которые удастся легко модернизировать.

Как сложное техническое устройство ПК нередко служит причиной нарушения здоровья человека.

Итак, рассмотрим основные факторы риска, при грамотном обращении с ПК негативный эффект сводится к минимуму.

Никогда не работайте влажными руками: руки всегда должны быть сухими. Компьютер ни в коем случае нельзя включать, если в него попала влага. Его нужно полностью просушить.

Помните, что все замены, сборку и разборку ПК следует производить только при отключении его от сети.

Особенно опасны мониторы с электронно-лучевой трубкой – внутри используется высокое напряжение. Также, если у вас нет опыта и навыков по работе с электро– и радиотехническими устройствами, лучше не разбирать блок питания.

Старайтесь не оставлять работающий ПК надолго без присмотра, особенно в летнюю жару. Сильный нагрев какого-либо узла должен сразу привлечь внимание. Если вы заметили, что греется вилка, «искрит» розетка или подобное происходит с удлинителем, немедленно замените неисправную часть, иначе это может вызвать возгорание. На ночь старайтесь выключать из розетки все электрические приборы. Оставленные в розетке электрические кабели питания, несмотря на то что компьютер и другие потребители энергии выключены, являются источником полей, они вредны для человека.

Не увлекайтесь продолжительной работой за ПК. Многочасовые просиживания за монитором, продолжительный ремонт плохо сказываются на самочувствии: появляется усталость, вялость, сонливость, возникает напряжение в глазах, переутомление мышц шеи, спины, рук, возрастает нагрузка на сердце. Такие постоянные воздействия приводят обычно к хроническим заболеваниям: остеохондрозу, близорукости, одышке, сутулости, апатии, психическим расстройствам.

Со временем вентиляторы в ПК начинают шуметь, монотонный шум, воздействующий на человека также неполезен и вызывает утомление. Старайтесь своевременно менять вентиляторы, используйте более качественные корпуса, включайте музыку.

Возьмите за правило: всегда делайте перерывы, гимнастику, гуляйте на свежем воздухе. Периодически проветривайте помещение, где работает компьютер.

Глава 2

Что может понадобиться

Рабочее место

«На коленках» ремонтировать ПК– не самый лучший выход, есть вероятность что-то потерять, что-то может выскользнуть, может произойти замыкание, отверткой можно неосторожно поцарапать плату. Случайности нужно постараться исключить.

Определите свой рабочий уголок, чтобы спокойно заняться ремонтом, пусть вам никто не будет мешать. Для ремонта понадобится отдельный чистый и устойчивый стол. Хорошо, когда предусмотрены полочки, для размещения инструмента, комплектующих, компакт-дисков и т. д. Постарайтесь исключить присутствие в комнате на время ремонта маленьких детей и домашних животных.

Освещение

Позаботьтесь об освещении. Когда света недостаточно – работать трудно. Вы не только можете ошибочно соединить устройства, неправильно установить переключатели, но и повредите свое зрение. Общего света всегда недостаточно. Установите настольную лампу. Например, удобна офисная лампа, которая крепится к торцу стола и имеет сгибаемую конструкцию – ее можно наклонить так, как будет удобно для выполнения работ. Также не лишним окажется небольшой фонарик. Современный светодиодный фонарик дает мощный равномерный поток света и долго работает от батареек или аккумуляторов. Им можно подсветить труднодоступные места при установке, ремонте и сборке ПК. Хорошо использовать фонарик с узким лучом, например mini Maglite. Особенно если общая освещенность окажется недостаточной, фонарик вам поможет в работе.

Рис. 2.1. Небольшой фонарик окажется полезным в работе

Инструменты

Ремонтировать ПК «голыми» руками не только неудобно и трудно, но часто просто не обойтись без специальных инструментов. Постарайтесь приобрести все необходимое заранее. Не лучший вариант, когда вы разобрали ПК и отправились на поиски нужного инструмента по всему городу. Из инструментов в первую очередь понадобятся следующие.

Отвертка под крест

Она пригодится для разборки и сборки ПК. Конечно, можно обойтись одной средней отверткой. Но лучше приобрести пару качественных отверток. Для маленьких винтиков целесообразно использовать соответствующую отвертку, маленькая отвертка потребуется, например, при ремонте вентиляторов.

В труднодоступные места можно «не попасть» короткой отверткой, удлиненная отвертка подойдет для доступа к углубленным винтам.

И наконец, сильно затянутые корпусные винты не всегда удается отвернуть слабенькой маленькой отверткой, поэтому наиболее удобен набор разных отверток.

Для того чтобы винтики не падали при монтаже, отвертку рекомендуется намагнитить (если под рукой нет отвертки с магнитным наконечником), подержав кончик на магните (для этой цели сгодится магнит обычного динамика в том же корпусе компьютера). Кроме того, чтобы винт случайно не упал, его желательно закрепить на отвертке пластилином для монтажа в труднодоступном месте.

Отвертка под шлиц

Для вспомогательных работ, а также для ремонта старых компьютеров понадобится небольшая плоская отвертка – раньше внешние разъемы крепились двумя винтами под плоскую отвертку.

Рис. 2.2. Прежде всего для ремонта ПК понадобятся отвертки


Пинцет

Часто нужно бывает придержать мелкие предметы, винтики, проводок в труднодоступном месте, где пальцами удержать крайне трудно. Для этих целей пригодится обычный медицинский пинцет. Неплохо обзавестись двумя, прямым и загнутым.

Рис. 2.3. Пинцет пригодится для удержания мелких предметов


Набор специальных отверток

Для того чтобы разобрать различные устройства, если их невозможно вскрыть, используя отвертки под крест и шлиц, имеются специальные отвертки. Подобное крепление делается специально, чтобы без соответствующей квалификации и, соответственно, без надлежащего инструмента внутрь не влезали.

Рис. 2.4. Набор специальных отверток


Плоскогубцы

Для фиксации и демонтажа крепежных шестигранников, устанавливаемых в корпус ПК для монтажа материнской платы, понадобятся небольшие аккуратные плоскогубцы. Также можно использовать и острогубцы, но более удобным окажется торцевой гаечный ключ.

Рис. 2.5. Плоскогубцы


Клещи для обжима сетевого кабеля

Чтобы на конце сетевого кабеля установить коннектор – разъем, понадобится специальный инструмент: клещи для обжима коннекторов сетевого кабеля.

Рис. 2.6. Клещи для обжима разъема RJ 45


В большинстве случаев для выполнения многих задач перечисленных инструментов будет вполне достаточно.

В специализированных магазинах встречаются различные специальные наборы для ремонта компьютерной и прочей техники, в них есть много нужных и не очень полезных инструментов. Они пригодятся, если вы надумаете заниматься ремонтом, сборкой компьютеров или установкой локальных сетей постоянно.

В таких наборах могут быть специальные отвертки, насадки, паяльники, пинцет с зажимом, антистатический браслет, сервисный нож, инспекционное зеркало, стрипер – инструмент специально предназначенный для быстрого и аккуратного снятия оболочки кабеля и изоляции провода, DIP экстрактор, 3-лучевой зажим, бокорезы, плоскогубцы с узкими губками, разводной ключ, разные шестигранные ключи, ручные тиски, экстрактор для контактов, надфили, универсальная реверсивная отвертка и т. д.

Такие комплекты инструментов размещаются в удобной сумке или кейсе из прочного материала.

Но не торопитесь сразу покупать первый попавшийся набор. Каждый набор рассчитан на определенный вид работы. Некоторые – для ремонта ПК, другие – для монтажа сети, третьи – для телефонных дел мастеров. Перед покупкой изучите входящие в набор инструменты, обратите внимание на их качество. Некоторые наборы настолько бесполезны и входящие в них инструменты некачественны, что они откровенно не стоят траты денег. Тогда уж лучше купить несколько отдельных, но нужных и хороших инструментов. Впрочем, в специализированных магазинах встречаются продуманные комплекты качественных инструментов и принадлежностей для компьютерных работ.

Измерительное оборудование

Работать «на глазок» не всегда правильно – вы не в состоянии определить, что происходит внутри той или иной схемы. Для контроля функционирования электроники требуются соответствующие измерительные устройства. Неплохо их иметь под рукой, и вы значительно сократите время работы.

Электрический пробник

Пробник, или индикаторная отвертка, поможет быстро проверить розетку, удлинитель. Обычно такие индикаторы продаются в хозяйственных магазинах, в отделах электрооборудования.

Рис. 2.7. Электрический пробник


Мультиметр

Для «прозвонки» электрических цепей, замера напряжения, проверки сопротивления окажется полезным универсальный измерительный прибор – тестер, или мультиметр. Раньше использовались стрелочные приборы, аналоговые. Сегодня их вытеснили цифровые, которые намного удобнее тем, что обладают более высокой точностью измерений, меньшим весом и габаритами, отличаются повышенной функциональностью.

Рис. 2.8. Цифровой мультиметр


Дополнительные принадлежности

Не только специальные инструменты и приборы вам пригодятся для ремонта. Часто разные «мелочи» оказываются крайне необходимыми. Крепежные винты – старайтесь собирать их про запас, ведь случайно легко выронить, потерять и т. д. Хорошо, когда в запасе всегда есть определенное количество крепежа.

Рис. 2.9. Полезно всегда иметь запас крепежа


Разные мелкие детали удобно хранить в маленьких баночках или коробочках, также в продаже можно найти специальные «кассы» для подобного рода деталей. Раньше радиолюбители самостоятельно изготавливали подобные «кассы» из спичечных коробков. Практично, когда все подобные мелочи хранятся в соответствующих подписанных с торца спичечных коробках, склеенных между собой. Таким образом, получается компактный «шкафчик», в котором можно хранить мелкие элементы, детали, крепеж.

Рис. 2.10. «Касса» из спичечных коробков – хранилище разной мелочевки


Кроме того, могут понадобиться иголки или шило, зубочистки для доступа и чистки «узких мест», для удаления остатков термопасты. Пипетка, машинное масло, вата, сухие чистые тряпочки, салфетки. Мягкая тряпочка понадобится для протирки от пыли, грязи. Могут оказаться полезными и ватные палочки.

Термопаста

Термопаста необходима для установки радиатора на процессор. Лучше приобрести АлСил, несколько хуже КПТ8 (рис. 2.11). Очень не рекомендуется Dow Corning T340, так как она может «намертво» приклеить процессор к радиатору и затем невозможно будет их разделить в случае необходимости.

Рис. 2.11. Термопаста


Лупа

Увеличительное стекло с удобной рукояткой вам может понадобиться для осмотра поверхности электроники – печатных плат на предмет царапин, сколов, трещин, замыканий, обгоревших контактов и т. д.

Рис. 2.12. Лупа поможет рассмотреть мелкие трещины и повреждения на поверхности комплектующих


Пылесос

И наконец, пылесос. Компьютеры со временем, словно магниты, притягивают пыль, поэтому наличие пылесоса крайне желательно. Можно приобрести специальный агрегат, но вполне подойдет и обычный – домашний бытовой пылесос. Однако если вы будете заниматься ремонтом оргтехники (ПК, копировальные аппараты, принтеры) постоянно, то очень быстро обычный бытовой пылесос придет в негодность. Поэтому в таком случае нужно постараться приобрести специальный, например марки 3М.

Рис. 2.13. Пылесос – главный друг ПК


Груша

Очень полезно иметь в своем распоряжении грушу. Желательно все же не медицинскую грушу. Хотя и она может быть лучше, чем ничего. Груша поможет вам продуть загрязненные и труднодоступные узлы и механизмы. Затем скопившиеся остатки грязи и пыли вы легко соберете пылесосом в доступном и открытом месте аппаратуры. Груша особенно пригодится при ремонте принтеров, копировальной техники, заправке картриджей и т. д. Целесообразно использовать грушу из материала, который не электризуется, на него со временем не «налипнет» тонер и т. д.

В работе пригодится и баллончик со сжатым воздухом, им удобно удалять пыль, особенно в труднодоступных местах.

Инструкции и справочники

Ремонт современной техники часто требует дополнительных источников информации: схемы, специальные инструкции по ремонту, различные справочные пособия. Все это существенно ускорит процесс ремонта, упростит задачу.

В век бурного развития Интернета ответы на многие вопросы несложно найти именно там.

Человеку, ремонтирующему сложную технику, окажется полезным сервис мануал, выпускаемый для конкретных устройств.

Сервис мануал (service manual, сервисное руководство) – это подробное руководство по ремонту оборудования. В нем содержится расшифровка схем устройства, рекомендации по ремонту и обслуживанию оборудования. Он дает возможность производить ремонт устройства самостоятельно.

Ресурсы, на которых объединены сервис мануалы различных устройств, вы можете посетить по адресам в Интернете:

• www.fixdevice.ru/smanuals.html;

• www.driverfiles.ru/servicemanuals/audiokolonkinaushniki.html.

Кроме того, могут понадобиться справочники, книги, в том числе в электронном виде, по ним вы сможете определить параметры различных электрорадиоэлементов (транзисторы, микросхемы, конденсаторы, резисторы, диоды, дроссели, трансформаторы и т. д.), подобрать им подходящую замену. Подбор параметров необходимо проводить с помощью соответствующих справочников и технической информации на данные радиоэлементы.

Диагностическое программное обеспечение

Не только инструменты помогают ремонтировать ПК. Чтобы проверить работоспособность компьютера, его отдельных модулей, точно определить рабочие параметры, существует специальное программное обеспечение, которое является удобным диагностическим инструментом. С его помощью вы сможете протестировать и определить характеристики системы, отдельных устройств и принять решение о целесообразности замены. Программы можно разделить на те, которые тестируют ПК полностью, позволяя определить конфигурацию компьютера, выводят спецификацию, проверяя все устройства ПК; и специальные программы, предназначеные для проверки лишь отдельных устройств, таких как материнская плата, жесткий диск, ЦПУ и т. д.

Кроме того, существуют программы, которые, подобно испытательному стенду, «гоняют» систему, имитируя интенсивную работу.

Подобных программ много. Они бывают как платные, так и бесплатные. При этом совершенно необязательно, что бесплатное ПО хуже.

Перед тем как приступать к ремонту, полезно ими обзавестись.

Наиболее интересные и хорошо зарекомендовавшие себя программы для тестирования ПК приведены ниже. Их можно скачать для ознакомления, а при необходимости и приобрести на соответствующих сайтах. Узкоспециализированные программы для тестирования отдельных устройств будут рассмотрены в соответствующих главах.

Одна из универсальных программ – SiSoftware Sandra (www.sisoftware.net). Программа очень проста и удобна в работе, интерфейс интуитивно понятен.

Информация отображается в виде модулей, которые предоставляют подробные сведения о системе, компонентах компьютера, о том, какие запущены системные процессы и сервисы, а также много другой полезной информации.

Программа позволяет измерить производительность процессора, оперативной и кэш-памяти, файловой системы жестких дисков и приводов CD/ DVD-ROM. С ее помощью вы можете просмотреть содержимое системных файлов и реестра и получить другие данные о системе.

Очень хорошая и популярная программа для диагностики компонентов компьютера – PC Check by Eurosoft (www.eurosoft-uk.com/pc_check.htm).

Она проста в пользовании, но обладает большими возможностями и функциональностью.

Программа может загружаться и работать с компакт-диска; среди ее возможностей: тест для аудиокодека AC’97, Fire Wire контроллера, а также тест системы на стресс – она заставляет все элементы компьютера работать в экстремальном режиме, во время тестирования могут проявиться скрытые неисправности. При этом проводится усиленное тестирование последовательных портов и DVD-привода.

Еще один программный комплекс, который содержит много полезных утилит, – это Fix-It Utilites (soft.softodrom.ru/ap/Fix-It-Utilities-Pro-p1305). Разобраться с ним несложно. Он определяет содержащиеся в системе устройства, тестируя их. Отдельные модули комплекса позволяют выявить: неисправные LPT, COM– и USB-порты, нестабильно работающую оперативную и видеопамять, а также проблемы жесткого диска и приводов CD, DVD-ROM.

C помощью специальных тестов проверяются клавиатура, модем, аудиотракт, сетевая плата, монитор.

При этом отображаются не только неполадки, но и возможные их причины.

Кроме диагностики компонентов компьютера, в программу входит множество нужных утилит.

К примеру, DiskFixer заменит утилиту Windows ScanDisk, JetDefrag предназначена для дефрагментации файловой системы, FileUndeleter позволит восстановить удаленные файлы, DiskCleaner поможет очистить пространство на жестком диске, MediaVerifier проверит читаемость файлов на компакт-диске и 3,5-дюймовых дисках.

В программе имеются утилиты для сохранения и восстановления важных системных файлов, образа диска. Раздел программы SystemRegistry предназначен для поиска ошибок, дефрагментации, чистки и удобного редактирования реестра.

EVEREST (http://www.lavalys.com) – популярная программа для детальной диагностики и тестирования аппаратных средств компьютера, а также для проведения сетевого аудита и настройки компьютера на оптимальную работу. Наверное, это самая лучшая утилита общей диагностики системы.

Она предоставляет сведения обо всем аппаратном и программном обеспечении, тестирует различные модули ПК, сохраняет отчеты в HTML– и TXT-форматах и т. д. Тестирование CPU, FPU и Memory BenchMark позволяет найти оптимальное решение для работы системы, а также сравнить текущее состояние системы с предыдущими или с другими системами. EVEREST Ultimate Edition предоставляет полную информацию относительно установленного программного обеспечения, операционной системы и степени безопасности. Она производит полную диагностику компьютера, собирая более 100 страниц информации о нем. В ее составе есть модули для предотвращения выполнения данных (например, вредоносного кода) с помощью функции DEP (Data Execution Prevention), создания брандмауера, нахождения шпионов, троянов и вирусов. Интерфейс оснащен встроенной панелью EVEREST CPUID, на которой компактно отображается информация о процессоре, материнской плате, оперативной памяти и архитектуре компьютера. Также предоставляются данные о возможностях «разгона» системы, динамических обновлениях. Диагностика программного обеспечения позволяет отслеживать температуру процессоров, состояние вентилятора и относительный износ диска. Поддерживается семь различных форматов отчета с возможностями распечатки и отправки по электронной почте. Вариант EVEREST Corporate Edition предоставляет максимум возможностей для сетевого аудита и удаленного мониторинга (соединение с удаленными компьютерами и их мониторинг; более полные отчеты, их конвертирование и взаимодействие с базами данных). В отличие от него, вариант EVEREST Ultimate Edition не поддерживает подобные сетевые средства, однако имеет больше возможностей по диагностике и локальному мониторингу, вот почему эта версия более полезна для «оверклокеров».

Для диагностики домашнего ПК вполне подойдет и пробная версия.

Еще с двумя очень хорошими диагностическими программами вы можете ознакомиться на сайтах разработчиков:

• PC-Doctor Suite (www.pc-doctor.com/downloads.php?group=default);

• QuickTech Professional (www.uxd.com/qtpro.shtml).

Программа FreshDiagnose (www.freshdevices.com) предназначена для диагностики системы и тестирует уровень производительности конфигурации ПК.

FreshDiagnose имеет интуитивно понятный интерфейс. В левой части ее окна расположены разделы, по которым производится анализ. Она содержит группы Software System и Hardware System. Первая из них позволяет получить максимально полную информацию об основных программных модулях, таких как операционная система, расширения файлов и ассоциированные с ними программы, системные папки и библиотеки, а также большое количество других дополнительных сведений. Группа Hardware System содержит информацию о BIOS, материнской плате, процессоре, кэш-памяти и имеющихся портах. Раздел Devices предоставляет сведения обо всех внешних подключенных устройствах: приводах компакт-дисков и DVD, манипуляторах, принтерах и т. д. Раздел Network and Internet сообщает об открытых сетевых ресурсах, настройках браузера Internet Explorer и параметрах доступа в Интернет. Есть разделы с информацией о мультимедиа-устройствах и аппаратных ресурсах.

Belarc Advisor (www.belarc.com/free_download.html) – утилита не требовательна к системным ресурсам, она позволяет быстро просканировать систему. Belarc Advisor создает HTML-файл, в котором представлены сведения обо всех компонентах ПК: материнской плате, процессоре, модулях оперативной памяти, платах расширений, видеокарте, винчестере, приводах компакт-дисков и DVD и т. д. Утилита указывает объем свободного места на дисках.

CrystalMark (www.crystalmark.info/software/CrystalMark/index-e.html) – многофункциональная тестовая утилита. Программа включает в себя несколько вкладок, предоставляющих полную информацию о процессоре, поддерживаемых технологиях, подключенных устройствах, жестком диске и прочие полезные данные.

В ее составе есть инструментарий для полной и объективной оценки производительности ПК. CrystalMark позволяет протестировать работу ЦП (блоки ALU и FPU), оперативной памяти, подсистемы видеопамяти (GDI, DirectDraw и OpenGL), жестких дисков, а также получить информацию о сетевых параметрах и общих системных компонентах.

Unknown Device Identifier (www.zhangduo.com/udi.html) – утилита предназначена для определения устройства, которое идентифицируется как неизвестное в Диспетчере устройств Windows. Запустив программу Unknown Device Identifier и произведя сканирование, пользователь может просмотреть полный список установленных устройств. Идентифицировать неопознанное устройство можно двумя способами: найти подходящий драйвер с помощью поисковой системы Google или обратиться к изготовителю, указанному программой в описании устройства. После этого нужно лишь найти на сайте производителя необходимые драйверы, загрузить их и установить.

SpeedFan (www.almico.com/speedfan.php) – утилита определяет скоростью вращения установленных в системном блоке вентиляторов (процессорный, блока питания и системного блока, а также жесткого диска, если на нем есть вентилятор).

SpeedFan дает возможность регулировать скорость вращения в зависимости от температуры и нагрузки. Регулировка может производиться автоматически по заранее установленным критериям температуры.

Программа поддерживает технологию S.M.A.R.T. (для мониторинга работы жесткого диска) и отображает диаграмму текущей температуры, скорости вращения и напряжения для выбранных вентиляторов и винчестера.

Большинство подобного рода «ремонтных» программ рассчитаны на установку и работу под операционной системой Windows. А так как при различных неполадках Windows не работает, то и такие программы не удастся запустить.

На сайте www.knoppix.org вы можете подробнее ознакомиться с ОС Linux – Knoppix. Она распространяется бесплатно. Эта ОС позволяет загрузиться, когда ПК не стартует под Windows. Запустив ОС Knoppix, можно работать в полноценной операционной системе без изменения содержимого вашего жесткого диска. Работая в графическом окне, вы сможете протестировать и настроить ПК, переписать данные с диска. ОС Linux – Knoppix очень проста в работе и не требует специальной подготовки.

Загрузите с сайта файл – образ диска и запишите его на компакт-диск; таким образом вы получите загрузочный компакт-диск с ОС.

Глава 3

Диагностика неисправностей

Общие рекомендации поиска неисправностей

ПК сломаться весь сразу не может. Крайне редко выходят из строя более одного модуля, поэтому задачей является локализация дефекта. Но нужно не только устранить дефект, заменить неисправную деталь, но и понять, что явилось причиной неисправности, что послужило основой отказа. Не исключено, что после починки компьютера через определенное время дефект повторится, если не устранить скрытую причину.

Не полагайтесь на советы знакомых, чей-то случайный опыт, стандартные рекомендации. Всегда старайтесь разобраться во всем самостоятельно. Не торопитесь «выносить приговор», определите истинную причину неполадки. Может случиться так, что ваш вывод окажется ошибочным и причина будет заключаться в другом. При ремонте проверяйте все последовательно, вам нужно убедиться в реальном положении вещей, а не доверять вторичным признакам.

Некоторые небольшие неполадки могут проявиться позже, и хорошо, если вы выявите их при проведении профилактики ПК. Ее следует проводить регулярно – как отдельных компьютеров, так и сервера, если вы обслуживаете сеть. Такой подход защитит ПК от накопления большого числа ошибок, которые могут привести к резкому отказу системы.

В целом схема ремонта выглядит так.

Вначале нужно провести диагностику и локализовать неисправность. Для этого могут понадобиться различные виды работ: визуальный осмотр, тестирование с помощью специальных программ, проверка с помощью специальных приборов. Для выполнения ремонта обычно требуется разборка ПК. Разбирайте компьютер, принтер, монитор и т. д. только в выключенном состоянии, никогда не оставляя сетевой кабель подключенным.

Затем производится непосредственно ремонт устройства: замена неисправного блока, платы или замена элемента на плате, восстановление нарушенного контакта и т. д.

После ремонта может понадобиться регулировка и диагностика, и затем сборка, после чего нужно обязательно проверить устройство на работоспособность.

Вначале проверьте самые простые, вероятные и легкоустранимые неполадки – нет смысла разбирать корпус, проверять материнскую плату или оперативную память, если случайно выключена на задней стороне корпуса кнопка включения БП.

Итак, рассмотрим вкратце возможные неисправности.

Процесс диагностики полностью «мертвого» компьютера наиболее сложен.

Прежде всего, проверьте кабели, правильно ли они подключены, плотно ли соединены разъемы, нет ли дефектов в самом кабеле. Очень многие проблемы оказываются связанными именно с кабельными соединениями. Отключите все кабели, оставьте самые необходимые и последовательно добавляйте остальные соединения, каждый раз выключая ПК и проверяя работоспособность.

С ПК может случиться все, что угодно. Если случайно попала жидкость, немедленно отключите питание и просушите. Сушить не следует с применением нагревательных приборов. Затем осмотрите внимательно поверхность плат и т. д. Если увидите следы замыкания, почернения, вздутия, то такая плата, скорее всего, уже неработоспособна. Кроме того, может произойти частичное повреждение. Например, может выйти из строя слот для видеокарты, а сама МП будет работать нормально на видеоадаптере PCI либо с использованием встроенного видеоконтроллера. Но не обязательно. Все зависит от степени повреждения. В таком случае возможен ремонт платы в сервис-центре. В домашних условиях обычным паяльником заменить неисправный разъем (микросхему) не получится, так как необходимы специальные паяльные станции, насадки, комплектующие. Возможным решением может быть полная замена материнской платы.

Пожар, возгорание, сильное тепловое воздействие отрицательно скажутся на ПК. Можно протестировать его и заменить неисправные комплектующие, элементы. Как правило, воздействие повышенной температуры свое дело сделает. Общий перегрев материалов, из которых сделаны комплектующие, приведет к изменению их свойств. Со временем с большей вероятностью появятся новые неполадки, так как повышенная температура приводит к ухудшению параметров элементов и изменению в работе электрической схемы.

Особую опасность могут представлять собой насекомые, грызуны, а также и домашние животные. Поэтому в местах, где вероятно попадание внутрь ПК насекомых, грызунов, не оставляйте открытым системный блок. Всегда надевайте крышку, а на задней панели корпуса должны быть установлены все заглушки слотов.

Если обнаружены механические повреждения, то следует определить, повлияют ли они на работу электроники. Если есть подозрение, то лучше перед включением ПК отдельно проверить и отремонтировать соответствующие комплектующие.

Приступив к ремонту ПК, сразу убедитесь, что исправны монитор и видеокарта (можно просто заменить их временно для тестирования заведомо исправными). Пригодится работающая видеокарта с разъемом, соответствующим разъему ремонтируемого ПК (AGP или PCI-E). Вполне сгодится устаревший, но работающий идентичный видеоадаптер.

Убедившись, что монитор исправен, протестируйте видеокарту проверкой на другом ПК или установкой в ремонтируемый системный блок исправной карты.

Определить неисправность системного блока в первом приближении можно по звуковым сигналам BIOS, сообщениям на дисплее.

Перед тем как разбирать системный блок и тестировать «железо», определите, не является ли причиной неполадки программное обеспечение ПК. Нередко проблема заключается в неправильной работе приложений, операционной системы, неправильно или не установленных драйверов. Также убедитесь в том, что компьютер не заражен вирусами. Попробуйте загрузиться с компакт-диска, на котором установлена ОС для проверки системы. Если все в порядке, вряд ли здесь причина заключается в аппаратной части.

Чтобы провести более детальную проверку ПК, нужно открыть системный блок. Для этого отсоедините ПК от сети, открутите винтики, которыми крепятся боковые крышки корпуса, или отожмите защелки, на которых они фиксируются.

Неисправности жесткого диска, привода компакт-диска и дополнительных плат определить проще, и мы их рассмотрим в соответствующих главах. Сложнее определить неисправность материнской платы.

Вначале сбросьте настройки BIOS, перезагрузите компьютер и войдите в программу настройки BIOS, проверьте установки, при необходимости настройте параметры правильно.

Если проблема не устранена, проделайте следующее:

Отсоедините все карты от материнской платы (модем, сетевой контроллер, звуковую карту и т. д.), оставьте только видеокарту. Отсоедините питание от жесткого диска, дисководов и т. д. Отсоедините от МП все шлейфы, провода кнопки «Reset» и включите БП. Если БП работает нормально и светодиод «Power» на лицевой панели компьютера светится, попытайтесь «запустить» системную плату.

Если на дисплее есть сообщение об инициировании видеокарты, а затем производится тестирование оперативной памяти, войдите в программу Setup. Отключите в ней винчестер и дисководы, перезагрузите компьютер и посмотрите, появилось ли на экране сообщение о невозможности загрузить систему. Если это так, то условно системную плату можно считать работоспособной и путем последовательной установки других карт можно обнаружить, какая из них приводит к неисправности. Ее следует заменить.

Если видеокарта и монитор по-отдельности проверены и исправны, но нет никаких сообщений на экране после включения питания, то неисправными могут оказаться процессор, оперативная память, системная плата. Попробуйте последовательно заменить оперативную память и процессор. Если оперативная память компьютера неисправна, ПК сообщит об этом с помощью звуковых сигналов.

Наконец, причина неисправности может заключаться в материнской плате. Возможных вариантов может быть несколько. Если плата полностью неисправна, она не запустится. Скорее всего, ее придется заменить. Плата может работать нестабильно и служить причиной «зависаний», «торможений» в работе ПК. Также на плате могут быть неправильно или неплотно подсоединены кабели, различные устройства. Возможны еще неполадки, связанные с корпусом, блоком питания. Иногда дефект связан с попаданием в ПК винтика, посторонних металлических предметов, неправильной сборкой. В таком случае рекомендуется полностью разобрать ПК и собрать заново.

Не исключено неправильное крепление системной платы.

Одной из проблем в случае неработоспособности ПК может оказаться короткое замыкание. Причина его может заключаться в неисправных комплектующих, кабелях, неправильном подключении, попадании металлических предметов между платой и корпусом или на поверхность платы.

Это весьма условная схема поиска неисправностей. На практике существует множество нюансов, их изучим более детально, применительно к каждому элементу ПК.

Вкратце рассмотрим основные характерные признаки, которые помогут определить неисправный элемент.

Неисправности электрической сети и сетевых устройств

ПК, который не включается, не подает признаков жизни, может быть исправным, а причина того, что он не работает, может оказаться в отсутствии питающего напряжения. Неплотный контакт силового кабеля с разъемом БП, а также неисправность самого кабеля могут служить причиной неисправности. Может оказаться неисправным удлинитель, сетевой фильтр. В сетевом фильтре или ИБП может выйти из строя предохранитель.

В удлинителе или сетевом фильтре может не работать одна или часть розеток. Также случается, что во всем доме пропало напряжение – возникли неполадки в городской электросети и т. д. Не исключено, что кто-то мог просто отключить рубильник в электрощитке, могло «выбить» автоматический предохранитель. Поэтому вначале последовательно пробником проверьте напряжение в доме, в розетке, в удлинителе, ИБП, в сетевом кабеле.

Неисправности БП и корпуса

Не стоит надеяться, что БП и корпус – абсолютно надежные устройства и «вылетать» могут только материнские платы и видеокарты.

Как правило, неисправности БП чаще всего выражаются в том, что компьютер либо не работает вообще, либо работает некорректно.

Прежде всего, проверьте, не выключен ли случайно БП выключателем на задней стороне. Он должен находиться в положении «ON» или «1». Проверьте, правильно ли установлен переключатель сетевого напряжения (slide switch) в соответствии с сетевым напряжением, если, конечно, он имеется. В нашей стране он должен быть установлен в положение 220/230/240 В. Перед изменением положения этого переключателя обязательно выключите компьютер из сети. Если БП случайно установлен в положение 110 В и если его включить в сеть 220 В, то он «полетит» с дымом и искрами. Тем не менее такой БП вполне можно починить, заменив сгоревший элемент, например конденсатор.

Неисправный БП может не только служить причиной нестабильной работы комплектующих, но и вызвать со временем их дефект.

Некачественный или недостаточно мощный либо неисправный БП может вызвать ошибки памяти, которые возникают по случайным адресам. Также неисправный БП может создавать периодически проблемы при загрузке ПК. Не исключены и перезагрузки, зависания – причина в недостаточной стабилизации напряжения или нехватке мощности БП. Особенно это возможно после модернизации, когда установлены мощные комплектующие, но остался старый БП.

Так, если ваш ПК не загружается после обновления, модернизации, часто происходят отказы системы, сбои, то однозначно замените БП на более мощный и качественный. Причем этот дефект может проявиться не сразу, а спустя несколько месяцев, что связано с ускорившейся из-за перегрева «деградацией» деталей блока питания, обычно конденсаторов.

В старых ПК со временем может оторваться или отделиться контакт – отсоединиться провод, идущий от БП. Такой провод может вызвать короткое замыкание, и даже возгорание.

Если есть возможность, попробуйте заменить БП другим – исправным, более мощным и посмотреть, устраняется ли причина.

Проблема может быть и в корпусе. Неисправности корпуса могут привести к тому, что компьютер не стартует, «висит», не работают индикаторы. Также компьютер может самопроизвольно выключаться.

Источники бесперебойного питания (ИБП) выходят из строя так же, как и остальные компоненты ПК. Типичная проблема всех недорогих моделей – аккумуляторная батарея. Большинство недорогих ИБП изготавливается без блока стабилизации напряжения, а защита от небольших скачков напряжения осуществляется кратковременным переключением на работу от батареи.

Если в сети перепады напряжения случаются часто, то аккумулятор в таком ИБП требует частых замен. Если напряжение в сети не пропадает и оно стабильное, то нет необходимости покупать дорогой ИБП.

Неисправности материнской платы

Признаки неисправной материнской платы: компьютер не стартует, компьютер работает нестабильно. Также ПК может работать вполне нормально, но после перезагрузки стабильность работы периодически ухудшается. Кроме того, неисправная МП может также служить причиной замедленной работы ПК. Рабочая и исправная материнская плата обычно служит долго – несколько лет она может проработать, как новая. Источниками неисправностей могут послужить как видимые причины: перегрев, скачки напряжения, остальные неисправные элементы, так и не исключен заводской брак, как явный, так и скрытый, который проявится со временем.

Неисправности МП возникают на самом деле не так часто. Как правило, МП от известного производителя работает долго и надежно, пока не возникнут факторы, провоцирующие возникновение неисправностей. Обычно все МП от таких производителей, как ASUS, работают без проблем. Дешевые МП могут намного чаще выходить из строя.

Если МП не подает никаких признаков жизни, не торопитесь выносить ей приговор – причина может заключаться в проблемах питания: сеть, БП, неправильное подключение и т. д.

Проверьте подключение кабелей от БП – АТХ и АТХ12 В. Убедитесь, что все штырьки обеспечивают надежный контакт. Попробуйте отсоединить и подсоединить их заново. Разъемы должны сидеть плотно и быть зафиксированы защелками.

Возможно, что МП частично выйдет из строя, например, окажутся неисправными разъемы, порты. Но плата при этом будет работать вполне корректно. В таком случае можно попытаться обойти проблему, если не удастся отремонтировать. Допустим, сгорел звуковой тракт. Отключите его в BIOS и установите отдельную звуковую плату. То же самое и с сетевым адаптером, видеокартой. Не исключено, что МП и дальше будет выходить из строя.

Но причиной неработоспособности может быть не только физическая неисправность или ошибки кабельных соединений. Часто различные неполадки возникают из-за неправильных ее настроек. Неправильно сконфигурированная МП может как вообще не запускаться, так и работать некорректно. Прежде в старых МП устанавливались перемычки для конфигурирования, сейчас же практически все настройки реализованы в программе CMOS Setup.

Если вы тестируете комплектующие на материнской плате вне корпуса, установив видеокарту и подключив БП, не забудьте также подсоединить динамик для того, чтобы услышать звуковые сообщения BIOS, – так будет проще локализовать дефект.

Перед тем как запустить МП, внимательно изучите руководство к ней и определите, правильно ли установлены перемычки, а также установите оптимальные параметры в BIOS.

Неисправности процессора

Из-за недостаточного охлаждения процессора компьютер может самопроизвольно выключаться. Из-за перегрева процессора вычисления могут производиться некорректно.

Кроме того, не обязательно может быть «виноват» процессор, который ведет себя «не так». Причина может заключаться в некачественном, недостаточно мощном БП, который питает ПК с установленным в нем мощным, быстродействующим процессором. Вторая возможная причина – выход из строя вентилятора охлаждения. Путем визуального осмотра при включении компьютера или попыткой провернуть лопасти следует убедиться в работоспособности вентилятора.

Старайтесь, чтобы ножки процессора не гнулись. Если они случайно погнулись, то аккуратно постарайтесь выпрямить. Для этих целей пригодится пинцет. Постарайтесь не сломать ножки. Процессор со сломанной ножкой придется заменить новым. Также проверьте разъем на МП – сокет, чтобы в нем случайно не оказалось забитых грязью или посторонними предметами контактов. Современный разъем для процессоров на МП (LGA 775) имеет мягкие контакты, к которым прижимается процессор, не имеющий штырьковых контактов.

Старайтесь не касаться руками контактов. Если вы устанавливаете процессор повторно, то обязательно удалите старую термопасту и нанесите новую.

Ни в коем случае не включайте ПК, если на процессоре нет охладителя или вышел из строя вентилятор.

Неисправности оперативной памяти

Неисправная оперативная память может послужить причиной сообщения Windows – «синий экран смерти», но не обязательно, что причина заключается в ОЗУ. Чтобы убедиться в этом, модуль памяти нужно протестировать. Попробуйте вынуть и вставить модули обратно. Внимательно осмотрите модули, слоты на МП. Если вы увидите царапины, трещины, прожженные токопроводящие дорожки, то такой модуль или слот, скорее всего, окажется неисправным. Попробуйте поочередно установить модуль в разные слоты и запустить систему. Если у вас два и более модуля, то поочередно устанавливайте их в МП и запускайте ПК. Если какой-либо модуль не работает ни в одном слоте, то вероятно, что он неисправный.

Неисправности жесткого диска

Проблем, связанных с жестким диском, у пользователей ПК хватает.

Здесь может быть три варианта.

1. Жесткий диск исправен, проблема заключается в другом. Возможные причины: жесткий диск подключен неправильно, на нем неправильно установлены перемычки. Проблема может заключаться также в неверных параметрах в программе SMOS Setup.

ОС может не загружаться с SATA жесткого диска. Причин в этом случае может оказаться несколько: МП не поддерживает SATA, BIOS требует обновления, операционная система, установленная на ПК, устаревшая – например, первые версии Windows 2000. Некоторые платы могут поддерживать жесткие диски SATA, но не поддерживать SATA-приводы компакт-дисков.

2. Жесткий диск «полуживой». Жесткий диск может периодически отключаться, не «видеться» операционной системой. При чтении данных могут происходить сбои. В таком случае важно сохранить информацию.

Вначале с помощью утилит проведите проверку поверхности жесткого диска. Если есть сбойные секторы, то программа пометит их, как нерабочие, и в дальнейшем они использоваться не будут. Самый лучший вариант здесь – это сохранить информацию и отформатировать диск заново после проверки. Такой диск вполне может еще послужить, но есть вероятность, что он и дальше будет разрушаться.

3. Жесткий диск неисправен. Такой диск не «видится» системой, он недоступен. Если на нем осталась ценная информация, то ее нужно постараться спасти. Этим занимаются специализированные компании.

Если на устаревшей МП нет SATA-интерфейса, то вы можете установить в PCI-слот специальный адаптер, к которому подключите накопитель. Чтобы загрузиться с диска, в BIOS ставится приоритет загрузки «SCSI first». При установке ОС может понадобиться драйвер контроллера дисков, если используется нестандартный контроллер.

Учтите, что если в BIOS имеется ограничение на объем жесткого диска, то оно распространяется и на диск SATA, подключенный через контроллер или адаптер.

Можно воспользоваться другим вариантом подключения – через SATA переходник для HDD-диска (АТА-SATA). Переходник подключается к SATA HDD и через обычный IDE шлейф подсоединяется к IDE-разъему на МП.

Если ОС не видит HDD, попробуйте поменять IDE-кабель и внимательно изучите установку перемычек.

Неисправности дисковода

Большинство неисправностей FDD связано с ошибкой при его подключении. Кабель-шлейф может быть подсоединен неправильно – наоборот или смещен. Обычно ошибка подключения кабеля сопровождается постоянным свечением светодиода на панели дисковода.

Не работать дисковод может по причине неправильного или неплотного подсоединения разъема питания. Также дисковод может оказаться неисправным. Вероятность выхода из строя интерфейса флоппи-дисковода на МП – не столь распространенное явление, хотя также стоит проверить. Если оказался неисправным сам дисковод, то его остается только заменить. При сегодняшних ценах на FDD, ремонт его не оправдан. Если вышел из строя интерфейс на МП, отключите его в BIOS и установите внешний USB флоппи-дисковод.

Неисправности привода компакт-дисков

Обычно период эксплуатации привода компакт-дисков самый короткий, по сравнению с остальными комплектующими ПК. Привод, как правило, работает исправно и редко капризничает, если все подключено и настроено правильно. Но однажды с ним начинают происходить различные проблемы.

Первым делом при появлении неполадок вместо того, чтобы вскрывать корпус и разбирать CD-ROM или DVD-ROM, перезагрузите ПК. Если операционная система не видит привод, проверьте, определяет ли его BIOS. Если и операционная система и BIOS не определяют привод, то здесь могут быть две причины: первая – отключен (неисправен) сигнальный кабель – IDE или SATA. Особенно это касается SATA. IDE-шлейф сидит в разъеме достаточно плотно, и его трудно случайно сместить. А вот SATA можно, задев кабель рукой, сместить с разъема. В таком случае контакты будут нарушены и система не определит привод. Не исключено, что на привод не подается питание. Проверьте конфигурацию привода – установку перемычек, кабеля, настройки.

Вторая возможная причина – привод неисправен, он вышел из строя. Иногда случается так, что привод не читает CD-диски, но читает DVD-диски, либо может быть наоборот. Скорее всего, причина заключается в повреждении (деградации) читающего лазера. В таком случае нужно заменить дисковод.

Дисковод может давать сбой при записи нового типа дисков. Например, вы записывали на одни и те же болванки и, купив новую партию, столкнулись с тем, что дисковод отказывается записывать. Попробуйте обновить прошивку, взяв ее на сайте изготовителя. В случае если проблему не удастся решить, попробуйте записать на болванку другого производителя, желательно использовать качественные диски известных марок.

Дисковод может не принимать некоторые диски, «выталкивать» их. Вероятная причина в том, что накопитель не поддерживает данный тип носителя, например двухслойные. Для определения поддерживаемых дисков воспользуйтесь специальными утилитами, о которых будет сказано в соответствующей главе.

Периодически накопитель желательно чистить, так как внутри скапливается пыль, особенно на блоке оптической головки.

Чтобы привод прослужил долго, не следует применять поврежденные и некачественные диски. Используйте болванки, произведенные в Японии и в Сингапуре. Старайтесь, по возможности, не приобретать диски, изготовленные на Тайване и в Гонконге.

Неисправности видеокарты

Первоначально проверьте, что на монитор подается питание. Затем убедитесь в правильности его соединения с видеокартой. Проверьте настройки монитора и видеокарты. Если есть второй монитор – исправный, подключите его к ПК и проверьте, работает ли видеокарта.

Чтобы убедиться в том, что видеоадаптер работает исправно, а причина заключается в неправильно установленных драйверах, параметрах, перезагрузите систему и войдите в безопасный режим. Для этого при загрузке надо удерживать клавишу F8. Появится меню вариантов загрузки, в котором следует выбрать Безопасный режим. Если в «Безопасном режиме» появились изображения и все работает нормально, проверьте драйвер видеоадаптера и настройки видеоадаптера и монитора.

Если выводится сообщение «Out of scan range» либо подобного рода надпись на экране, проверьте соединение с монитором, войдите в «Безопасный режим» и правильно установите параметры видеоадаптера. Если частота или выставленное разрешение не соответствуют возможностям монитора, он их не «осилит» – на экране не будет изображения. Для того чтобы снизить параметры, нужно войти в настройки через «Безопасный режим» либо подсоединить монитор, который поддерживает выставленные параметры.

Видеодрайвер может «конфликтовать» с каким-либо оборудованием или другой установленной программой, но это встречается очень редко.

Если после установки самой поздней версии видеодрайвера появились проблемы, то переустановите предыдущую, проверенную версию.

В случае когда видеокарта предусматривает дополнительное питание, убедитесь, что вы его подключили к видеокарте.

Иногда возможен конфликт установленной в первый PCI-слот платы с видеокартой. Попробуйте вынуть плату и запустить ПК, оставив только видеокарту, или переставить плату в другой слот.

Не исключены и аппаратные проблемы видеокарты. Причины их возникновения могут заключаться в повышенной нагрузке на видеокарту, в ее перегреве или проблемах с питанием. Происходят и разные случайности – попадание в ПК влаги, неправильная установка видеокарты.

Проверьте, установлена ли правильно видеокарта, зафиксирована ли она фиксатором и винтиком в корпусе ПК. Иногда может потребоваться вручную установить в программе CMOS Setup вывод видеосигнала на видеокарту AGP или PCI и отключить встроенный видеоадаптер.

Неисправности монитора

Неисправности монитора, к сожалению, очень распространенное явление.

Если монитор не включается и при этом вы проверили, что сеть к нему подходит – в розетке или удлинителе есть напряжение, проверьте сетевой кабель монитора. Для проверки можно временно переставить сетевой кабель от системного блока ПК.

Отсоедините видеокабель от ПК и включите монитор. Если на экране «плавает» табличка, монитор, скорее всего, исправен, и причина в системном блоке.

Проверьте, не перепутали ли вы выходы – если в вашем ПК установлена видеокарта, не подключили ли вы монитор к встроенному видеовыходу материнской платы, который мог быть отключенным в BIOS, – МП могла также отключить его автоматически.

Проверьте настройки монитора и установите яркость, контрастность в среднее положение.

Лучше всего, по возможности, проверить монитор на другом ПК. Затем проверьте разъемы: видеокабель, разъем выхода видеокарты. Разъемы должны быть чистыми, контакты не должны быть изогнутыми.

Неисправности звуковой карты

Встроенная звуковая плата на МП обычно работает достаточно надежно. Случаи выхода из стоя на МП встроенной «звуковушки» – редкое явление. Чаще встречаются неисправности дополнительных звуковых карт. Вероятность выхода из строя платы от малоизвестного производителя, конечно, выше. Но это не означает, что плата, например, от Creative не может выйти из строя. Еще как может. Звуковые платы могут не только полностью не работать, но и иметь дефект в виде шума, неисправных выходов и т. д. Немалая часть «дефектов» оказывается вызванной некорректными настройками, неправильно установленными драйверами.

Неисправности периферийных устройств

<p>Клавиатура</p>

Грязь, пыль, капельки засохшей жидкости, крошки, сигаретный дым – все это первый враг компьютерной клавиатуры. Периодически она нуждается в чистке. Самое простое – это перевернуть ее вниз клавишами и как следует потрясти. Лучше, конечно, регулярно ее пылесосить. Для очистки клавиш можно их протереть мягкой тряпочкой, на которую нанесена чистящая жидкость.

Существует еще один весьма полезный способ чистки клавиатуры. Возьмите малярную кисточку, мыло и промойте клавиатуру под струей воды – кистью с мылом, пока не отмоется как следует. Затем клавиатуру хорошенько промойте струей воды от мыла. Выложите ее вертикально для сушки на неделю, за которую она гарантированно просохнет.

Перед чисткой клавиатуры не забудьте выключить ПК.

В случае, когда клавиатура не работает, попробуйте вначале просто перезагрузить компьютер. Вообще, этот шаг не лишним окажется и при ремонте других устройств.

Если перезагрузка ПК не помогла, внимательно осмотрите клавиатуру, переверните и потрясите. Нередко внутрь может попасть скрепка или другой мелкий предмет.

Проверяя контакты, следует вначале отключить ПК, а затем отсоединить и подсоединить клавиатуру. Никогда не производите отключение и подключение как клавиатуры, так и мышки к работающему ПК. Если контакты разъема погнулись, аккуратно их выпрямите.

Помните, что попадание статического электричества на порты PS/2 может вывести порт материнской платы из строя. В случае выхода из строя порта PS/2 придется заменить клавиатуру на USB-вариант.

Если у вас USB-клавиатура, то попробуйте ее переставить в другой USB-порт.

В случае возникновения проблем с установкой USB-клавиатуры, нераспознаванием ОС USB-портов пригодится переходник разъема USB в PS/2. Нередко МП при загрузке не определяют порты USB, и войти в BIOS, нажимая клавишу DEL на USB-клавиатуре, будет проблематично.

Чтобы убедиться в неисправности клавиатуры, протестируйте ее на другом – исправном – ПК.

<p>Мышь</p>

Компьютерная мышь – устройство, которое испытывает повышенную механическую нагрузку, изнашивается чаще всех остальных устройств. Ведь мышь практически основное устройство управления ПК, которое постоянно находится в работе.

Если используется на старом ПК «древняя» шариковая мышь, то она постоянно собирает всю грязь и пыль со стола. Поэтому она периодически перестает нормально работать. Мышь можно почистить. Переверните мышь, поверните кольцо, расположенное вокруг шарика и снимите кольцо и шарик. Острым неметаллическим предметом – зубочисткой и т. д., чтобы не нанести на ролики микроцарапины, аккуратно удалите грязь и ворсинки, собравшиеся вокруг двух металлических или пластмассовых цилиндрических осей. Полезно промыть шарик с мылом под водопроводной струей и высушить, положив его на салфетку.

Удалив грязь и пыль и промыв, верните шарик на место и закрепите его фиксирующим кольцом.

На сегодняшний день такие мыши можно встретить лишь в старых ПК. Современные мыши устанавливаются в USB-порт, да и вместо шарика используется лазер.

В беспроводных мышах чаще всего проблемы возникают из-за батареек или аккумуляторов. Старайтесь следить за этим и своевременно заряжать их. Кроме того, некачественные контакты могут стать причиной того, что заряд от батарей не поступает.

Практически все основные проблемы связаны с подключением и разъемами, а неисправную мышь нужно заменять.

<p>Игровой манипулятор</p>

Если возникли проблемы с игровым манипулятором, то проверьте, установлена ли у вас самая свежая версия DirectX. Иногда после обновления DirectX требуется установить самую последнюю версию драйвера вашего игрового манипулятора. Проверьте обновления на сайте производителя.

Не старайтесь установить старую версию DirectX. Если вы установили более позднюю версию, не устанавливайте предыдущие версии.

Если не удалось решить проблему, а манипулятор подключен к GAME-порту, то попробуйте следующее. Удалите драйверы звуковой карты, выключите ПК и удалите звуковую карту. Запустите систему без нее. Включите ПК без «звуковушки» и выключите. Вставьте звуковую карту, включите ПК и установите обновленные драйверы звуковой карты.

Нередко использование удлинительных кабелей вызывает проблемы. В таком случае желательно заменить кабель на более качественный.

Если вы хотите подключить через Y-образный кабель два манипулятора к GAME-порту, то постарайтесь использовать одинаковые манипуляторы и со сквозными портами (pass-through).

Если вы правильно установили драйверы, при этом манипулятор исправный, причина неполадок может оказаться в USB-портах. Попробуйте переставить разъем в другой USB-порт. Часто из-за подключения через USB-хаб, у которого некачественные контакты, возникают проблемы.

Кроме того, может встретиться проблема несовместимости устройств USB. Она может быть вызвана тем, что на МП USB 1.1, а игровое устройство имеет USB 2.0, или наоборот.

Для решения проблемы можно установить в МП (в слот PCI) плату расширения для предоставления портов USB 2.0. При этом не забудьте на МП отключить порты USB.

Если игровое устройство потребляет больше тока, чем обеспечивает слабенький USB-концентратор или, например, порт USB на клавиатуре, то подключите его к корневому концентратору на ПК. На МП не все порты имеют одинаковое питание. Кроме того, причина может оказаться и в неисправном кабеле или удлинителе USB. Такой кабель следует заменить.

Старайтесь не подключать к современным ПК старые игровые манипуляторы, рассчитанные на интерфейс ISA, у которого микросхемы работают под напряжением 5 В. В новых схемах на игровой порт подается 3,3 В.

<p>Зависание системы</p>

«Зависания» ПК часто вызваны перегревом. Требуется уделить внимание охлаждению ПК – проверьте температуру МП, процессора, жесткого диска с помощью программ (Everest, Sandra и др.).

Зависание могут вызвать вновь установленные комплектующие, попробуйте временно удалить «подозрительные» устройства и проверьте работоспособность ПК. Если с охлаждением нет проблем, но ПК все равно «зависает», не исключено, что перегрев связан с процессорным радиатором. Также проверьте БП.

<p>Долгое выключение ПК</p>

ПК, особенно если ОС устанавливалась давно, может слишком долго выключаться либо зависать при этом. Выключение завершает работу ОС и всех приложений. Если приложений много, процесс затягивается. Кроме того, ПК «зависает», если во время выключения происходит сбой какой-либо программы.

Причина может быть и в драйверах, например, видеокарты. Попробуйте переустановить соответствующий драйвер.

Долгое выключение ПК может быть связано со службой терминала (используется для быстрого переключения между пользователями, для удаленной помощи и т. д.). Отключение служб терминала ускорит процесс выключения.

Еще одна причина – стирание операционной системой кэша и виртуальной памяти. По умолчанию эти функции отключены, но некоторые программы самостоятельно запускают их, следовательно, процесс выключения замедляется.

Если все перечисленное не помогает, выявите недавно установленные программы. Скорее всего, проблема вызвана ими. Последовательно удаляйте программы, начиная с последней установленной.

Дополнительно сократить время выключения можно, уменьшив количество программ в автозагрузке.

<p>Восстановление данных с поврежденных компакт-дисков</p>

Информация с компакт-диска может не читаться из-за поврежденной поверхности (царапины, потертости и др.), либо плохой записи.

Чтобы восстановить информацию с дисков, имеющих неглубокие царапины (поврежден только верхний слой диска) попробуйте «народный способ» – мягкая тряпочка и зубная паста. Нанесите немного пасты на тряпочку и осторожно втирайте ее на поврежденный участок. Зубная щетка, даже мягкая, нежелательна. Смачивайте периодически диск водой и продолжайте полировку – это трудоемкий и длительный процесс.

Слишком длительная полировка, свыше 1,5 часа, приводит к потере данных. Эффект от полировки стоит ждать лишь при неглубоких царапинах.

После работы тщательно промойте диск под теплой водой. Перед считыванием диск следует вытереть, не оставив ни одной капли влаги.

Сохраните данные на диск и попробуйте повторить полировку еще раз – возможно, это позволит прочитать больше данных. Продолжайте этот процесс до момента, когда дальнейшая полировка начнет приводить к разрушению данных.

Если файлы скопировались, это еще не значит, что они целые. Для сравнения информации, пересчета файлов и каталогов, исключения из результатов одинаковых файлов и каталогов, синхронизации воспользуйтесь программой Sync Last Files Professional (www.kutinsoft.com/ProductInfo/SyncLastFilesProfessionalInfo.php).

Существует и программный способ восстановления данных с поврежденных дисков. Специальная программа «Надежная копия» (www.durablecopy.com) обеспечивает считывание поврежденных файлов, пропуская нечитаемые места, и извлекает максимум доступной информации.

Попробуйте создать образ нечитаемого диска одной из программ – Clone CD, Nero, Easy CD Creator и т. п. Если первая программа не справилась, воспользуйтесь следующей, возможно, для вашего диска она подойдет лучше.

Если образ (желательно ISO) создался, попробуйте извлечь информацию. Доступ к информации несложно получить и без записи образа на диск, а из него самого при помощи специальных программ. Но если вы будете записывать образ на диск, используйте ту же программу.

Не забудьте попробовать прочитать диск в другом приводе (разные модели приводов по-разному читают диски).

Глава 4

Корпус и блок питания

Корпуса, используемые в ПК и серверах

Для сборки системного блока ПК используются различные корпуса – шасси. Каждый тип корпуса предназначен для установки определенных материнских плат. Внутри классов корпусов встречаются самые разные исполнения, в зависимости от конструктивного решения и дизайна.

В целом ПК собираются в корпусах нескольких типов (форм-фактор). В зависимости от форм-фактора в корпус устанавливаются соответствующие типы блоков питания и материнских плат, такого же форм-фактора или совместимые.

Обычно большинство корпусов ПК изготавливаются из металла, лицевая панель – часто из пластмассы. Реже встречаются корпуса, изготовленные целиком из пластмассы.

• ХТ – устаревший тип корпуса. Он использовался для сборки ПК на базе процессоров 8086, 8088.

Рис. 4.1. Корпус компьютера XT


• АТ – устаревший тип корпуса. Он использовался для сборки ПК на базе процессоров 286, 386, 486. Блок питания использовался форм-фактора АТ.

Рис. 4.2. Корпус компьютера АТ


• АТХ – современный корпус, в котором собирается большинство компьютеров. Этот форм-фактор может иногда называться Full ATX. В отличие от старого форм-фактора АТX блок питания вынесен за контуры материнской платы, так как для охлаждения более мощных процессоров понадобились более габаритные охладители. В первых версиях корпусов АТХ БП находился над процессором, что не только было неудобно при сборке и ремонте ПК, но и ухудшало охлаждение системы.

В такой корпус устанавливаются как полноразмерные МП, так и МП форм-фактора MicroATX. Блок питания в корпус АТХ может быть установлен форм-фактора АТХ и SFX.

Рис. 4.3. Корпус компьютера АТХ


• Extended ATX – корпуса используются обычно для сборки серверов и рабочих станций. В них могут быть установлены как обычные полноразмерные МП, так и МП с расширенными размерами. Блоки питания в них установлены форм-фактора АТХ.

Рис. 4.4. Корпус компьютера Extended АТХ


• Micro-ATX – в корпус может быть установлена только МП формфактора MicroATX и БП SFX. Но некоторые корпуса форм-фактора Micro-ATX допускают также установку БП ATX.

Рис. 4.5. Корпус компьютера Micro-АТХ


• BTX – материнские платы форм-фактора ВТХ внешне похожи на МП форм-фактора АТХ, но несовместимы с элементами АТХ. Такие корпуса распространены мало, да и стоимость их выше, чем у других.

Рис. 4.6. Корпус компьютера BTX


Компьютерные корпуса могут быть изготовлены в разных исполнениях:

• Desktop. Настольные низкопрофильные – Low-profile desktop (типа Slim), NLX (New Low profile Extended) и стандартные настольные (desktop). Материнская плата в них расположена горизонтально, а жесткий диск нередко вертикально.

Такие корпуса были очень распространены раньше, особенно Full Desktop, которые в настоящее время уже не применяются. Сейчас можно встретить Mini Desktop и Desktop. В основном такие корпуса востребованы в офисных ПК. Для большинства людей они малоинтересны, так как занимают много места на столе, такой ПК сложнее модернизировать, да и эксплуатация его менее удобна.

Рис. 4.7. Корпус компьютера Desktop


• Micro-tower. Основное преимущество этого типа корпуса – малогабаритность. Но в целом это далеко не лучшее решение с точки зрения расширяемости и модернизации системы. В корпусах Tower МП расположена вертикально, а жесткий диск – горизонтально.

Рис. 4.8. Корпус компьютера Micro-tower


• Mini-tower. Хороший и удобный тип корпуса. Оптимален в эксплуатации, ПК в таком корпусе проще ремонтировать.

Рис. 4.9. Корпус компьютера Mini-tower


• Middle-tower. Также удобный корпус, который не сильно отличается от предыдущего. Наиболее популярный и универсальный тип корпуса. Хорошее решение с точки зрения дальнейшей модернизации.

Рис. 4.10. Корпус компьютера Middle-tower


• Big – tower (Full-tower). Корпуса высоки и обычно они располагаются на полу. В них могут устанавливаться несколько жестких дисков и оптических накопителей. Внутри такого корпуса достаточно большое пространство, которое позволяет установить больше комплектующих. С таким корпусом удобно работать, он обладает отличной ремонтопригодностью. Кроме того, в таких корпусах лучше охлаждение. Башни Big-tower имеют существенно больший вес, габариты и значительно большую цену.

Рис. 4.11. Корпус компьютера Big-tower


• Small Form factor (SFF). Корпус малого форм-фактора. Этот тип корпуса напоминает «куб» и достаточно популярен среди тех, кому необходима компактность. В нем могут быть установлены МП соответствующего форм-фактора. Выбор МП этого форм-фактора крайне ограничен. Вдобавок при установке в такой корпус мощных процессоров или накопителей возникает проблема с отводом тепла. С точки зрения ремонтопригодности и модернизации это – худший вариант. Его главное достоинство – компактность может быть востребована в очень тесных офисах и т. д.

Рис. 4.12. Корпус компьютера SFF


При выборе или замене корпуса системного блока ПК нужно учитывать следующие факторы:

• Качество корпуса. Недорогие корпуса изготовлены иногда так, что трудно собрать ПК, не поранившись, – тонкий металл, неровные отверстия, острые края, заусенцы и т. д. К тому же мягкий и тонкий металл легко гнется, случайно уронив или надавив на крышку корпуса, можно ее смять.

В таких корпусах платы расширений могут устанавливаться криво и неплотно входить в слоты и т. д.

В хороших и качественных корпусах используются более толстые металлические пластины, нет острых краев, все подогнано очень точно и комплектующие собираются без перекосов и натяга. Собирать в таких корпусах компьютер очень удобно, в них предусмотрена буквально каждая мелочь. Комплектация их такова, что вам не придется искать дополнительные мелкие детали и крепеж.

При выборе лучше ориентироваться на стальные корпуса, а не на алюминиевые.

• Уровень шума. Дешевый корпус из тонкого металла не способен уменьшить уровень шума. К тому же добавочные вибрации некачественного корпуса также создают шум. Со временем такой корпус «разбалтывается» и начинает сильно гудеть. Приходится принимать дополнительные меры: менять БП на бесшумный, менять вентиляторы, придумывать уплотнения в местах крепления комплектующих и т. д.

• Система охлаждения. Охлаждение корпуса должно обеспечивать эффективный отвод тепла. Для этого существуют вентиляционные отверстия, дополнительные вентиляторы и другие технические решения. Перед тем как купить корпус для замены или сборки ПК, загляните внутрь – изучите конструкцию, вентиляцию, возможность дальнейшей модернизации. Обычно в хороших магазинах корпуса выставлены на витрину и можно попросить менеджера открыть крышку. Можно также изучить корпус по фотографиям в Интернете – на сайте магазина или производителя.

Как правило, хорошо вентилируемые и менее шумные корпуса имеют также еще и привлекательный внешний вид.

• Блок питания. БП в новом корпусе должен обеспечивать требуемую мощность. Лучше пусть будет запас по мощности, чем БП будет работать на пределе. Хорошо, когда в корпусе существует возможность замены БП на более габаритный (в глубину), так как в дальнейшем может понадобиться более мощный БП.

Блоки питания, используемые в компьютерах

Компьютерный блок питания (БП) предназначен для обеспечения электроэнергией всех узлов ПК. Напряжение сети переменного тока (в нашей стране 220 В) выпрямляется и понижается до заданных значений. БП выполняет также функцию стабилизации напряжения и защиты.

Если ПК не включен, сетевой кабель подсоединен к розетке, а выключатель на корпусе БП не выключен, то БП работает. На МП поступает «дежурное» напряжение, питающее микросхемы МП и некоторые подключенные к ней устройства. «Дежурное» напряжение используется для возможности включения ПК клавиатурой, дистанционно модемом или локальной сетью. На МП обычно в районе разъемов SATA встроен небольшой зеленый светодиод, он светится при подаче «дежурного» напряжения.

Вначале, после включения ПК, БП проводит самотестирование (0,1–0,3 с), после которого посылает сигнал[1] на ЦП. Если БП неисправен (не прошел самотестирование), ПК не начнет работу, чтобы его компоненты не получили повреждение.

Основным рабочим параметром компьютерного блока питания БП является максимальная мощность, которую он может потреблять из сети, и величина максимального тока 12-вольтной цепи. Современные БП построены по импульсной схеме и обеспечивают выходные напряжения ±5, ±12, +3,3 В. Большинство микросхем используют для питания 5 В. В настоящее время распространен БП стандарта ATX, который появился вместе с процессорами Pentium. До этого использовались БП стандарта AT, которые обеспечивали питанием МП с процессорными разъемами Socket 7 и Socket 370.

Рис. 4.13. Блок питания компьютера стандарта АТХ

Характеристики и спецификация БП

Форм-фактор БП определяет физические размеры, расположение отверстий крепления, схему электрических разъемов.

<p>БП стандарта AT</p>

В БП AT выключатель питания выполнен в виде отдельного устройства (кнопочного 4-контактного выключателя), который разрывает контакты цепи, подающей напряжение на БП.

Рис. 4.14. Блок питания компьютера стандарта АТ


Такой выключатель выведен на переднюю панель системного блока и соединен с БП 4 проводами, которые находятся в общем кембрике.

Компьютер с БП АТ не может автоматически включаться и выключаться.

БП стандарта AT подключается к материнской плате двумя идентичными 6-контактными разъемами. Они вставляются в единый 12-контактный разъем на материнской плате. К разъемам от блока питания идут цветные провода, подключать нужно так, чтобы контакты разъемов с черными проводами были рядом – в середине разъема материнской платы. Схема AT-разъема питания на материнской плате представлена в табл. 4.1.

Таблица 4.1. 12-контактный разъем питания БП АТ

Для безошибочного подсоединения проводов питания к кнопке в корпусе AT нужно, чтобы при замыкании контактов соединялись белый с коричневым, черный с синим провода, либо черный с коричневым, белый с синим. Нельзя, чтобы соединялись черный с белым, синий с коричневым.

<p>Стандарт ATX</p>

Использование стандарта АТХ (AT Extended Specification) позволило избавиться от механического выключателя на передней панели ПК, который разрывал входную цепь БП – 220 В. Теперь же большая кнопка на корпусе современного ПК при нажатии замыкает провода, идущие к МП. Напряжение 220 В выключается только лишь кнопкой на задней стороне БП. Стандарт АТХ позволяет дистанционно управлять включением ПК.

Блок питания стандарта ATX в настоящее время имеет несколько разъемов, подключаемых к материнской плате: универсальный разъем питания 20+4 контакта (1 шт.), разъем 12 В (1 шт.). Кроме этого имеются: разъемы для подключения периферийных устройств – накопителей – (несколько шт.), разъемы SATA (1 или 2 шт.), разъем для видео PCI-Express (1 шт.), разъем для FDD (1 шт.). Некоторые из них могут отсутствовать, и количество их может быть разным.

Основной разъем БП содержит 20 контактов, расположенных в 2 ряда. Описание их приведено в табл. 4.2, указаны стандартно используемые цвета проводников.

Таблица 4.2. 20-контактный разъем питания БП АТХ

Рис. 4.15. 20-контактный разъем питания АТХ


В новых версиях стандарта ATX появились 4-контактный разъем с питанием + 12В, который подсоединяется к материнской плате на базе процессоров Pentium 4. и специальный дополнительный 6-контактный разъем для подключения современных видеокарт.

В ранних компьютерах форм-фактора АТХ блоки питания обеспечивали мощность около 250 Вт.

С увеличением мощности, потребляемой ПК, в БП понадобился дополнительный разъем; в стандартах АТХ 2.02, АТХ 2.03 и АТХ 12V 1.X.

В последующих стандартах этот вспомогательный разъем был исключен. Вспомогательный разъем обеспечивал дополнительную мощность до 72 Вт в цепи +12 В.

Таблица 4.3. Вспомогательный 6-контактный разъем БП АТХ

Повышенное энергопотребление процессоров Pentium 4 и новых AMD заставило разработчиков установить на МП дополнительный разъем для питания процессора. На материнских платах установлены модули стабилизации напряжения, которые преобразовывают высокое напряжение от БП – 12 В в низкие напряжения, для питания ЦПУ. Intel добавила в стандарт АТХ новый 4-контактный разъем для напряжения 12 В, расположенный максимально близко к преобразователю и процессору, чтобы уменьшить утечку энергии. Этот разъем называется Р4, или +12 Power Connector. Разъем Р4, у которого контакты выдерживают ток 8А, обеспечивает 192 Вт в цепи + 12 В.

Таблица 4.4. 4-контактная вилка ATX12V1

Рис. 4.16. 4-контактный разъем питания АТХ, +12 В


С появлением видеокарт PCI Express понадобилась дополнительная мощность для обеспечения питанием более производительных видеокарт. 20-контактный разъем питания был заменен на составной 24-контактный стандарта АТХ 12V 2.0 – 20+4. В итоге суммарная мощность БП, складывающаяся из мощности, передаваемой через основной разъем, к примеру – 370 Вт, и 4-контактный разъем – 192 Вт, может достигать 560 Вт.

Таблица 4.5. 24-контактный разъем питания БП АТХ 12V 2. 0

Рис. 4.17. 24-контактный разъем питания АТХ


Для питания мощных видеокарт был разработан специальный 6-контактный разъем для передачи +12В. Так же как и в 4-контактном дополнительном разъеме, контакты рассчитаны на максимальный ток 8 А. Некоторые материнские платы поддерживают две видеокарты, для таких плат выпускаются БП с двумя 6-контактными разъемами. Самые мощные БП обеспечивают нагрузку до 1000 Вт.

Таблица 4.6. 6-контактный разъем БП АТХ для питания видеокарт PCI Express

Для питания дисковых накопителей (винчестеров), CD и DVD-приводов используется специальный 4-контактный разъем Molex-Peripheral, или Molex (табл. 4.7).

Таблица 4.7. Разъем для питания внешних устройств – Molex для АТА – дисков и приводов CD

Для питания 3,5" дисковода – флоппи используется отдельный 4-контактный разъем питания (табл. 4.8).

Таблица 4.8. Разъем для питания внешних устройств – для 3,5" дисковода

Когда появился новый стандарт интерфейса SATA, понадобился уже другой разъем питания. Если БП не имеет специального разъема, то используется переходник. В приведенной спецификации разъема питания SATA выводы COM – «Земля».

Таблица 4.9. 15-контактный разъем БП АТХ для питания SATA-устройств

Рис. 4.18. Переходник для питания SATA устройств


Существующие разновидности блоков питания стандарта АТХ представлены в табл. 4.10.

Мощность БП измеряется в ваттах, это номинальная мощность, которую он обеспечивает.

Коэффициент полезного действия (КПД) – отношение выходной мощности к входной мощности, которое выражается в процентах. У хороших, эффективных БП КПД находится в пределах 70–80 %. Чем выше КПД, тем меньше БП потребляет электроэнергии от сети. И при этом, чем менее он эффективен, тем больше электроэнергии он переводит в тепло.

Таблица 4.10. Разновидности БП АТХ

Уровень стабилизации – это степень преобразования переменного тока с помехами в стабильное напряжение постоянного тока. Чем лучше и качественнее БП, тем более точное, гладкое и отфильтрованное от помех напряжение он подает на питание процессора, материнской платы и т. д. Идеальная схема преобразования – синусоида на входе БП преобразовывается в ровную линию постоянного напряжения. В реальности на выходе БП постоянное напряжение сопровождается небольшими пульсациями, степень которых выражается в процентах от номинального напряжения. Для выходного напряжения 12 В один процент пульсаций составит 0,12 В, или 120 мВ. На разных значениях напряжения у БП могут быть разные проценты отклонений. В целом у качественных БП уровень пульсации составляет 1–3 % от номинала. А вот у дешевых и некачественных – пульсации могут достигать и 10 %, что очень плохо для работы ПК.

В процессе работы ПК нагрузка на БП меняется. При этом под действием нагрузки меняется номинальное напряжение – отклоняется от заданной величины.

Стабилизация нагрузки – это способность БП выдавать номинальную выходную мощность для каждого напряжения при изменении нагрузки. У хорошего БП выходные напряжения – +3,3 В, +5 В, +12 В – меняются в пределах 1–3 % при изменении нагрузки в допустимых пределах. Менее важные напряжения —5 В, – 12 В – достигают 5 %. А вот некачественные БП могут «позволить себе» отклонения 10 % и более.

Раньше +12 В использовалось только для двигателей приводов. С появлением мощных процессоров +12 В используется и для их питания. Поэтому применение устаревших БП нежелательно из-за отсутствия необходимой стабилизации.

Благодаря стабилизации обеспечивается относительно ровное выходное постоянное напряжение при изменении входного – переменного в допустимых пределах. У хороших БП при изменении входного переменного напряжения в допустимых спецификацией пределах выходное постоянное напряжение обеспечивается точно в соответствии с заявленными производителем значениями.

Основной источник шума, который добавляется блоком питания в общий фон – это вентилятор. Существуют БП, в которых разработчики предусмотрели пониженный уровень шума. Такие тихие блоки работают практически бесшумно. Разница между дешевым и таким БП заметна сразу.

Чаще всего в БП выходят из строя вентилятор и входные элементы электрической схемы. Для обеспечения надежной и бесперебойной работы ПК полезно иметь в своем распоряжении запасной БП, в случае если рабочий выйдет из строя. Следует периодически очищать БП от пыли и менять вентилятор, если понадобится. Но все равно, через пару лет эксплуатации ПК очень желательно вообще заменить БП.

В сети переменного тока могут происходить сбои и скачки. Поэтому БП желательно защитить от подобных негативных воздействий.

Для защиты от помех, перепадов напряжения в сети желательно установить сетевой фильтр.

Но он не спасет, если пропадет напряжение – пусть даже кратковременно – и компьютер выключится, ведь при этом вы можете потерять результаты работы. Во избежание подобных неприятностей следует установить резервное питание – источник бесперебойного питания ИБП, в котором используется аккумуляторная батарея.

Неисправности БП и ремонт

Множество отказов операционной системы, сбоев и различных проблем связано с тем, что в ПК работает некачественный, устаревший или перегруженный БП. Плохой БП способен ухудшить работу даже самых дорогих комплектующих. Обычно в готовых ПК, предлагаемых в магазинах, установлены далеко не лучшие БП. В них будет установлен скорее самый мощный процессор, чем «правильный» БП, на которых некоторые сборщики компьютеров экономят. Тем не менее БП – важнейший компонент ПК, которому следует уделять самое серьезное внимание.

Рис. 4.19. Блок питания с открытой крышкой


Если светодиод «Power» на лицевой панели корпуса не светится и при этом вентилятор в блоке питания не работает, то отключите от сети компьютер, откройте корпус системного блока, отсоедините разъемы питания от системной платы, флоппи-дисковода, CD-ROM, винчестера. Подсоедините БП к любому дисководу, так как совсем без нагрузки его включать нельзя.

Для запуска БП АТХ без МП нужно закоротить зеленый и любой черный провод в разъеме, который подключается к системной плате (номера контактов 13 и 14). Это можно сделать с помощью жесткого провода либо с помощью обычной канцелярской скрепки.

Если после включения он не подает «признаков жизни», то он неисправен. Если же он оказался исправным, то есть вентилятор вращается, следует искать короткое замыкание (КЗ) в других модулях ПК. Это может оказаться и материнская плата, и остальные комплектующие.

Когда вы протестируете БП и убедитесь, что он работает, постарайтесь определить места возможных коротких замыканий. Для этого последовательно подсоедините остальные устройства. Вначале подключите материнскую плату, а затем и другие. Каждый раз включайте БП, затем выключайте и подсоединяйте следующее устройство.

Так вы определите источник замыкания. Кратковременные замыкания для БП не очень опасны. В исправном и качественном БП сработает защита, напряжения снизятся до нуля. Но при таком падении напряжения на дисках может пропасть информация, не исключены и сбои в файловой структуре дискет и жесткого диска. Когда вы отремонтируете ПК, протестируйте жесткий диск и дискеты (если они использовались в момент возникновения замыкания или просто случайного экстремального выключения).

Проверка на предмет выявления устройства, вызывающего КЗ производится без предварительного теста БП и полного отключения всех узлов ПК.

Включите ПК и отсоедините одно из устройств, например жесткий диск. Затем следующее по списку – DVD-привод, видеокарту, оперативную память, МП. Не забывайте, что необходимо отключать сетевой кабель питания от ПК перед каждым отсоединением комплектующих. Это нужно, так как некоторые БП при КЗ на выходе не могут сами повторно включиться без отключения от сети, даже после устранения источника КЗ. Когда на очередном отключении ПК запустится, последний отсоединенный модуль, скорее всего, и есть источник неисправности. Конечно, при отключении таких комплектующих, как видеокарта или память, ПК не сможет работать, но системный динамик звуковым сигналом сообщит об ошибке.

Основной причиной выхода из строя блоков питания являются скачки напряжения в сети, а также перегрев из-за недостаточного охлаждения – возможно, из-за сильного загрязнения или остановки вентилятора, запыленности БП.

Вообще перегрев ПК это плохо. А перегрев БП вдвойне плохо.

При возрастании температуры падает выходная мощность БП. Номинальная мощность определяется при рабочей температуре 25 °C. Однако при повышении температуры до 40 °C, она, скорее всего, снизится на треть. Одновременно ухудшается и стабилизация выходного напряжения. Иначе говоря, перегрев БП приводит к изменению всех его технических параметров.

Если БП при включении ПК запускается на короткое время и затем отключается, то причина может заключаться в том, что его мощности недостаточно для работы. Не используйте такой БП, он приведет к выходу из строя других комплектующих ПК.

Вначале выявите причину неисправности.

Прежде всего, проверьте предохранитель, расположенный перед сетевым фильтром. Если он сгорел, то определите причину, которая могла привести к выходу его из строя. Замените предохранитель аналогичным. Не стоит устанавливать более мощные, а также слабые. Следующий шаг – осмотр БП, есть ли дефекты, которые проявляются визуально. Это целостность проводников, выводов, пайки, отсутствие обгоревших элементов, вздутий.

В импульсных блоках питания чаще всего выходят из строя первичные цепи – два силовых транзистора, диодный мост и сглаживающие конденсаторы. Нежелательно менять неисправные элементы на отечественные аналоги.

Можно также проверить тестером соответствие напряжений и уровень сигнала Power Good.

Ниже в табл. 4.11 показан разброс выходных напряжений БП.

Таблица 4.11. Выходные напряжения БП АТХ

Проверьте высоковольтные цепи, высоковольтный фильтр и выпрямитель при помощи омметра. У конденсаторов не должно быть обрывов и КЗ.

Следующий шаг – проверка высоковольтного ключа – транзисторы. К ним обычно прикреплен радиатор (маркировка «В», «С», «Е»). Если сопротивление в цепи «коллектор-эмиттер» низкое либо его нет, транзистор необходимо заменить на аналогичный.

Проверьте сопротивление выходов +5 В, +12 В, – 5 В, – 12 В. Каналы +5 В и +12 В не должны иметь сопротивление свыше 100 Ом.

Если сопротивление меньше, возможно, требует замены диод (диоды) выпрямительного моста. С неисправным диодным мостом БП не будет работать, напряжения существенно уменьшатся, вентилятор не будет вращаться, в БП будет слышен негромкий шум.

Проверьте сопротивление выходов каналов -5 В, – 12 В. Ремонт следует проводить как и в предыдущем случае.

Если не вращается вентилятор, его необходимо снять, почистить и смазать. Либо заменить новым.

БП может отказаться работать в холодном помещении. Причина может быть в том, что один из элементов работает только при более высоких температурах, или в микросхеме ШИМ-контроллера (требуется замена).

БП старой версии (от старых ПК), а также дешевые изделия могут не обеспечивать необходимую мощность, что также является причиной выхода БП из строя. Ремонтировать такой блок с экономической точки зрения невыгодно. Если же из строя вышел БП компьютера от известного производителя, например SONY, который невозможно заменить стандартным, поскольку он не влезет в корпус, то ремонт БП будет единственным выходом. В этом случае могут понадобиться: замена разъемов питания, перепайка контактов, замена неисправных элементов.

Чтобы ПК работал стабильно и надежно, в нем должен быть установлен качественный, достаточно мощный БП с хорошей защитой.

Для замены подберите БП, который подходит под ваш корпус. Старые БП – АТХ 1.Х, АТХ 2.Х, АТХ 12V 1.Х, АТХ 12V 2.Х – можно заменить на АТХ12У.

Примечания

1

Используется специальный управляющий сигнал – «Power Good».

Конец бесплатного ознакомительного фрагмента.

  • Страницы:
    1, 2, 3, 4, 5